

Answering Why-questions by Exemplars in Attributed Graphs

Mohammad Hossein Namaki¹ Qi Song¹ Yinghui Wu^{1,2} Shengqi Yang³

Multi-attributed Graph and Subgraph Query

- Multi-attributed graphs: a labeled graph with attributes on nodes
- Subgraph query Q: a (labeled) graph pattern with a focus node u_o
- Knowledge extraction, POI recommendation, Medical Analysis, etc..

Multi-attributed Graph and Subgraph Query

- Multi-attributed graphs: a labeled graph with attributes on nodes
- Subgraph query Q: a (labeled) graph pattern with a focus node u_o
- Knowledge extraction, POI recommendation, Medical Analysis, etc..

Why-questions by Exemplars

- Why-questions
 - Why question: "why some (unexpected) entities are in the query answer?"; and
 - Why-not question: "why certain entities are missing from the query result?"
- Exemplars: User specified entities / SQL statement to characterize answers

"I want to see some cellphones which are similar to **S9**"

Relevant entities: {**S6**, **S9**}, Irrelevant entities: {**A5**}

Why-questions by Exemplars: an Example

"I want to see some cellphones which are similar to **S9**"

Why-questions by Exemplars: an Example

"І и

"I want to see some cellphones which are similar to **S9**"

Explanation

Graph Exploratory Search Guided by Examples

Answering Why-questions: Problem Formulation

• Why-question:

Answer of Why-questions: query rewrites (operators with editing cost)

Answering Why-questions: Quality Measurements

Answer closeness:

Answering Why-questions: Problem Statement

- Input: a query Q, answer Q(G), graph G, a Why-question W, and editing budget B,
- **Output:** a query rewrite $Q' = Q \oplus O^*$, such that

 $O^* = \underset{O:c(O) \leq B}{\operatorname{arg\,max}} cl(Q'(G), \mathcal{E})$

- The problem of answering Why question by exemplar is **NP-hard** and **hard to approximate**.
- Solution overview:

Problem	Property	Algorithm	Description	
Why-Question	NP-Hard Not in APX	AnsW	Exact	
		AnsHeu	Heuristic	
Why-Many	Approximable	ApxWhyM	1/2(1 - 1/e) approximation	
Why-Empty	P-Time for special case	AnsWE	Exact for special case	

A Characterization by Extending Chase

- Q-Chase enforces value constraints from \mathcal{E} over subgraph queries and their answers in G
- An inductive process
 - Initialization: $(Q_0, \mathcal{E}_0) = (Q, \mathcal{E})$
 - Q-Chase step i: $(Q_i, \mathcal{E}_i) = Q$ -Chase $(Q_{i-1}, \mathcal{E}_{i-1})$
- A Q-Chase is terminated when all the constraints in *E* are satisfied
- Finding the optimal terminal sequence that maximizes answer closeness.

In contract to conventional Chase

Computing Optimal Query Rewrite - Algorithm

- Our idea: performing a best first search strategy with backtracking to simulate Q-Chase Generate and prioritize a set of "picky" operators; operators that are likely to improve closeness Query construction and evaluation; $RM: \{S6\}$ Terminate when no budget or achieve optimal Q'. IM: $\{A5\}$ 0_2 01 RM:{S6} RM:{S6} Performance analysis: $\mathbf{Q'}_2$ Qʻ IM: Ø IM: $\{A5\}$ Anytime behavior 03 Delay time to simulate a Q-Chase: RM:{S6, S9} $0(|Q.S(G)|_{h_m}^{|Q|+1})$ $\mathbf{Q'_3}$ No irrelevant matches $IM: \{A5\}$ $|Q.S(G)|_{b_m}$: b_m -hop neighbors of Backtracking b_m : maximum edge bound 01 the edges in star views in GRM:{S6, S9} Q'₄ IM: Ø

Computing Optimal Query Rewrite - Optimization

- Pruning: closeness upper bound
- Star views: a primitive structure
 - Query decomposition
 - Picky operator suggestion
 - Incremental query evaluation

 $\begin{array}{ll} Price \geq 790 & RAM \geq 4 \\ Display \leq 6.4 & Storage \geq 64 \end{array}$

 $RM = \{P_3, P_4, P_5\}$ $IM = \{P_1, P_2\}$

Experimental Setting

Datasets

Name	Description	# of nodes	# of edges	# of attributes per node
DBPedia	Knowledge Graph	4.86M	15M	9
IMDb	Movie Network	1.7M	5.2M	6
Offshore	Financial Activities	839K	3.6M	4
WatDiv	e-commerce information (synthetic)	521K	9.1M	8

- Ground truth queries: benchmark queries and a query generator.
- Question generation: disturb $(Q^*, Q^*(G))$ by injecting random atomic operators.
- Algorithms
 - Exact algorithms: AnsW (optimized), AnsWnc (no caching), AnsWb (no pruning).
 - Heuristics: AnsHeu, and AnsHeuB (random).
 - **Baseline:** FMAnsW (Mottin et. al. 2015).

Experimental Result

Answering Why questions: efficiency and effectiveness

AnsW outperforms FMAnsW, AnsWb, and AnsWnc

by 10.82, 3.41, and 2.1 times, respectively

AnsW constantly achieves the maximum

closeness among others.

- User study:
 - Ask users to re-rank the top-3 query rewrites from AnsW;
 - Good answer relevance: $nDCG_3 = 0.71$.
- Case analysis: product recommendation
 - A user searched for recent computer models with GPU (after 2018)
 - Desired laptops powered by either Intel or AMD GPU

A Demo system

NAVIGATE: Explainable Visual Graph Exploration by Examples

Wednesday & Thursday 16:20 - 17:50

