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ABSTRACT

Node ranking in temporal networks are often impacted by hetero-

geneous context from node content, temporal, and structural di-

mensions. This paper introduces TGNet, a deep learning frame-

work for node ranking in heterogeneous temporal graphs. TGNet

utilizes a variant of Recurrent Neural Network to adapt context

evolution and extract context features for nodes. It incorporates

a novel influence network to dynamically estimate temporal and

structural influence among nodes over time. To cope with label

sparsity, it integrates graph smoothness constraints as aweak form

of supervision. We show that the application of TGNet is feasible

for large-scale networks by developing efficient learning and infer-

ence algorithms with optimization techniques. Using real-life data,

we experimentally verify the effectiveness and efficiency of TGNet

techniques. We also show that TGNet yields intuitive explanations

for applications such as alert detection and academic impact rank-

ing, as verified by our case study.
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1 INTRODUCTION

Temporal graphs have been widely applied to model dynamic net-

works [9, 10, 27]. A temporal graph is a sequence of graph snap-

shots, where each snapshot (G, t) encodes a graph G occurs at an

associated timestamp t . Emerging applications call for efficient pre-

dictive models that can effectively suggest and maintain the nodes

with high priority in dynamic networks. The need for such mod-

els is evident in causal analysis [10], anomaly and attack detec-

tion [27], and link prediction in social networks [9].

Learning to rank node in static graphs has been studied [3, 8,

35, 39]. A common practice in prior work is to make use of latent
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Figure 1: Alert ranking in a heterogeneous system alert network.

features from graph structures to learn ranking functions. Learn-

ing node ranks in dynamic networks are nevertheless more in-

volved than its counterpart in static networks. In particular, the

node ranks can be influenced by rich context from heterogeneous

node information, network structures, and temporal perspectives. Con-

sider a real-world example from alert management [41].

Example 1: Figure 1 illustrates a fraction of a real-world heteroge-

neous temporal information network from data center monitoring.

The graph contains three snapshotsG1-G3. Each snapshot contains

four types of entities: host, service that a host can provide, log

generated by services, and alert as suspicious system events. For

example, an event “unusual low amount of packages” occurred at

host h2, indicated by its associated log l5 and l
′
5, triggers an alert

a5 at 09 : 45 am that suggests a network failure. It is infeasible to

manually inspect every alert to identify those with high priority,

which are more likely to trigger diagnosis.

One may train a model to automatically rank and suggest alerts

with high priority. This is nevertheless nontrivial for temporal graphs.

(1) The node ranks can be determined by context features from

both structural and temporal dimensions. For example, frequent

linkages between “login failures” a6 and a7 to host h2 in G3 may

suggest a host failure; alert a5 (“unusual small amount of logs”)

should be ranked higher when it occurs after alerts “ Connection

failed” (a3,a4), suggesting a temporal consequence. (2) The model

should cope with context features that bear constant changes over

time. Moreover, labels provided by users over temporal data are

typically sparse, covering a small fraction of nodes. Conventional

models over static networks [3, 8, 35, 39] rely on structural features,

and are unable to capture these context dynamics. �
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Other applications, such as network attack detection [31] and

author ranking [14], also require learning to rank nodes in tempo-

ral networks. While desirable, learning to rank nodes in temporal

graphs is more challenging than its counterpart over static graphs.

In particular, we observe the following challenges.

Context learning. Context features of a node are formed by cer-

tain activities related to this node. Such features offer us impor-

tant sources of information to differentiate the roles that different

nodes play in node ranking. In temporal graphs, context features

are characterized from both structural and temporal dimensions.

(1) Structural context captures the features in the neighborhood

of nodes at each snapshot. For example, frequent occurrences of a

certain type of alerts related to a host (e.g., “login failures” a6 and

a7 around host h2 in G3, Figure 1) may suggest a host failure. (2)

Temporal context suggests the impact of historical or future events

to current decisions. For example, we should suggest a higher in-

vestigation priority to the alert “unusual small amount of logs” (a5)

upon a scenario where it happens after the frequent occurrences

of alerts “Connection failed” (a3,a4), compared with another sce-

nario where we observe a5 alone. As it is impractical to manually

perform exhaustive feature engineering over heterogeneous graph,

we need an automated approach to learn context features for node

ranking.

Context dynamics. Context features of a node bear constant changes

over time. For example, the context of host h2 (Figure 1) at 03:33

am (normal condition) is different from its counterpart at 09:44 am

(system failure). Such dynamics require effective and expressive

models that can capture context evolution over time.

Label sparsity. Labels provided by users are typically sparse and

cover a small fraction of nodes. For example, system admins and

anti-malware software may only provide a few ranked examples

over months of data with thousands of alerts. This calls for effec-

tive learning that can be generalized from sparsely labeled data.

Time cost. Efficient algorithms should be developed to support fast

learning and ranking upon the arrival of new nodes. This requires

effective optimization and provable performance guarantees for

both learning and inference cost.

Learning node ranking has been studied in static graphs [3, 8, 35,

39]. These approaches focus on structural features, and are unable

to capture context dynamics. The above challenges call for new

framework that enables accurate node ranking in temporal graphs.

Contribution. This paper introduces TGNet, a novel deep learn-

ing framework that automates feature learning for node ranking

in temporal graphs. TGNet tackles all the above challenges with

contributions summarized as follows.

(1) TGNet learns context features fromheterogeneous node attributes,

network structures, and temporal correlation for more accurate

node rank prediction. It utilizes two parameter-controlled network

layers, namely, structural propagation and temporal propagation lay-

ers, to extract and exploit network structural and temporal context

features, respectively (Section 3).

(2) We introduce influence network, a novel network layer utilized

by TGNet to cope with context dynamics (Section 4). Unlike con-

ventional methods that adopt fixed pairwise influence [4, 35, 38],

influence network layer takes updated node context features as in-

put, and dynamically estimates the amount of temporal and struc-

tural influence among the nodes.

(3) We show that TGNet can be efficiently learned over large tem-

poral networks, by developing an end-to-end learning algorithm

(Section 5). To address label sparsity, we impose a class of graph

smoothness constraints as a weak form of supervision to address la-

bel sparsity. We also develop optimization strategies such as neigh-

borhood sampling to reduce the learning cost.

(4) Using real-life datasets from system management, cybersecu-

rity surveillance, academic networks, and social networks, we ex-

perimentally verify the performance of TGNet (Section 6). Our ex-

perimental study over real-world temporal networks verifies that

TGNet outperforms conventional learning to rank models (such as

random-walk basedmodels) in accuracy with better generalization

power, and incur no worse or smaller training cost. In particular,

it achieves a high accuracy of 0.92 for ranking system alerts, and

0.87 for ranking suspicious packages in network security. TGNet

also provides interpretable patterns that “explain” the ranking of

nodes, as verified by our case study. These demonstrate practical

applications of TGNet in large-scale dynamic networks.

2 RELATEDWORK

Node ranking in static graphs. Node ranking has been studied

for static graphs with unsupervised PageRank [36] or HITS [13].

These methods compute ranking scores via link-based analysis.

Both graph structures and node attributes are exploited for unsu-

pervised PageRank-based node ranking [20]. Supervised methods

are also studied to exploit user preference. Tsoi et al. [33] studied

quadratic programming to solve constrained PageRank with users’

opinions. Agarwal et al. [3, 4] developedmethods that learn param-

eters ofMarkovianwalks in graphs that satisfy pairwise preference

constraints between nodes. Backstrom et al. [8] investigated pa-

rameter learning in random walk with restart for link recommen-

dation in online social networks. Wei et al. [35] studied parameter

learning in heterogeneous graphs. In [5], a Laplacian smoothness

constraint based method was developed. Rao et al. [29] proposed a

label propagation based ranking algorithm. Hsu et al. [20] incorpo-

rated node attributes and proposed aMarkov chainmodel to obtain

the ranking. To cope with label sparsity, semi-supervised learning

to rank [15, 40] enforces smoothness over ranking scores.

It is difficult to directly apply thesemethods for temporal graphs,

due to context drifting and considerable tuning effort. Temporal

context is not addressed in these works.

Node ranking in temporal graphs. Several recent methods have

been proposed to update node ranks in dynamic networks [19, 28,

30, 39]. For example, Zhang et al. [39] proposed a method with

bounded propagation cascade for forward push and reverse push.

O’Madadhain et al. [28] proposed a framework to rank nodes de-

rived from social events occurring over time. Yu et al. [37] pro-

posed an information flow propagation model for ranking on het-

erogeneous networks. To capture how changes in external interest

influence the importance of a node, Rossi et al. [30] proposed an

evolving teleportation adaptation of the PageRank method. To im-

prove the accuracy, evolution patterns [10, 38] are used to model
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dynamics in node importance. To improve the efficiency, an adap-

tive ranking method is proposed [2] by taking into account only

recent historical data.

Unlike existing methods that mainly focus on unsupervised set-

tings, we develop a supervised method that automatically incorpo-

rates domain knowledge by labeled data, and integrates node at-

tributes, network structures, and temporal correlation to improve

ranking accuracy. Our model utilizes parameter-controlled graph

propagation to jointly model structural and temporal context. We

also develop end-to-end, efficient learning algorithm to guide pa-

rameter estimation, instead of using preset parameters [38].

Deep Learning on Static Graphs. Deep learning has been ap-

plied to prediction problems in static graphs. Notable examples in-

clude variants of graph neural networks [25] for prediction tasks in

graph sequence data, and graph convolution neural networks [12].

These models are hard to be adapted for ranking in temporal net-

works, as they are designed for learning over static data. For ex-

ample, while the model in [25] only deals with a fixed set of nodes

in graph sequences, we propose influence network to adaptively

update influence among dynamic sets of nodes that are allowed to

join or leave at any time. Moreover, none of these models makes

use of temporal information, which is a necessity for predicting

node ranks in temporal networks. To the best of our knowledge,

our work is the first attempt that exploits deep learning for node

ranking in temporal graphs.

3 MODEL OVERVIEW

3.1 Learning to rank node

We start with the temporal graph model used in TGNet. We re-

serve bold lower-case letters for column vectors (e.g., a), normal

lower-case letters for scalars (e.g., a), bold upper-case letters for

matrices (e.g., A), and normal upper-case letters for graphs, sets,

and functions (e.g., A).

Temporal Graph. A temporal graph is a sequence of snapshots G

=
(
〈(G1, t1), . . . , (Gs , ts )〉,V , F

)
, where

(1) A snapshotGi = (Vi ,Ei ) is a graph with nonempty set of nodes

Vi and edges Ei at timestamp ti (i ∈ [1, s]);

(2) V =
⋃
i ∈[1,s]Vi is the node set of temporal graph G; and

(3) For each node v ∈ V , F : V → Rdin is a function that assigns a

din-dimensional input feature vector tov . Here F (·) can specify

domain-specific node features.

We consider heterogeneous temporal graphswithmultiple types

of nodes and edges. Fig. 1 depicts a heterogeneous temporal graph

G with three snapshots. For node a5, its feature vector F (a5) con-

tains node type (e.g., “alert”), and domain-specific features such as

alert description (e.g., “Unusual small # of logs”) extracted from log

analysis tools [7].

Ranking function. We define training data G as a pair (G,D),

where (1)G is a temporal graphwith node setV , and (2) the labeled

data D is a set of ordered node pairs {〈u,v〉 | u ∈ V ,v ∈ V }. Each

pair 〈u,v〉 ∈ D suggests that v is preferred over (ranked higher

than) u. In practice, such data can be provided by domain experts.

Given a temporal graph G and a set of target nodes V ′ ⊆ V ,

a ranking function д : V ′ → R assigns ranking scores to these

Symbol Definition

G
(
〈(G1, t1), . . . , (Gs , ts )〉, V , F

)
; temporal graph

Gi a snapshot in G at timstamp ti
V ′ target nodes in V to be ranked

D labeled data

xv input feature vector of node v

hv hidden state vector of node v with length dh
yv ranking score of node v

Win, bin model parameters in initialization layer

pu,v structural influence factor from u to v

wsi , bsi model parameters in structural influence network

λv,ti ,tj temporal influence factor from ti to tj on node v

wt i , bt i model parameters in temporal influence network

wout , bout model parameters in output layer

Table 1: Notations

nodes, such that for each node v ∈ V ′, д(v) is a ranking score that

quantifies the preference to v : the higher, the more preferred v is.

In practice, the targeted node set V ′ specifies the nodes of users’

interests to be considered for ranking (e.g., “alert” nodes in Fig. 1).

Problem statement. We study a general learning to rank node

problem for heterogeneous temporal graphs. Given training dataG

consists of a temporal graph G and labeled dataD, a ranking func-

tion spaceM, and an error function J (·) that measures the ranking

error, the problem is to find an optimal function д∗ ∈ M such that

the ranking error J (д∗,G) is minimized.

This problem is a departure from our familiar learning to rank

for static data. It requires a feasible model that incorporates struc-

tural and temporal context, is adaptive to context dynamics, and is

able to be generalized from sparse labels.

3.2 Overview of TGNet Model

We next introduceTGNet, a neural network basedmodel for learn-

ing to rank nodes in temporal networks. In contrast to conven-

tional models, it incorporates both structural and temporal context

to predict node ranks in temporal graphs.

TGNet model. TGNet consists of four components (as illustrated

in Figure 2): (1) Initialization layer, which projects input feature

vector into hidden state space; (2) Structural propagation layer,

which exchanges neighborhood information among the nodes in

a snapshot for the construction of structural context features; (3)

Temporal propagation layer, which propagates temporal influence

between snapshots for temporal context features; and (4) Output

layer, which transforms hidden states to ranking scores.

We introduce the details of each layer. Given a temporal graph

G with 〈(G1, t1), . . . , (Gs , ts )〉 and target nodes V ′, TGNet sequen-

tially processes snapshots from G1 to Gs and infers node ranking

scores for nodes inV ′. Assume that (Gi , ti ) is the snapshot TGNet

is processing at timestamp ti .

Initialization layer. When v ∈ Vi , and Gi is the snapshot in which

v first occurs, the initialization layer of TGNet performs feature

selection on the input node features of v as:

h
(i,0)
v = tanh(WT

in · xv + bin) (1)
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Figure 2: Basic components of TGNet

where xv = F (v) is the input feature ofv , tanh(·) is hyperbolic tan-

gent function that projects input feature vector into adh -dimensional

feature space, h
(i,0)
v is the initial hidden state of nodev , andWin , bin

are model parameters.

Intuitively, hidden states of a nodev encode the context informa-

tion “around” v in a temporal network. Hidden states are formed

and updated by multiple layers of structural and temporal propa-

gation as shown below.

Structural propagation layer. Structural neighborhood serves as a

source of context features and provides valuable insight to decide

node ranks [17, 34]. The goal of this layer is to collect structural

neighborhood information for each individual node in Gi . TGNet

materializes this process by iteratively performing local informa-

tion propagation (for L times). For any v ∈ Vi and 0 ≤ k < L,

h
(i,k+1)
v = tanh

( ∑

u ∈Nv

p
(i,k)
u,v h

(i,k)
u

)
, (2)

where tanh(·) is hyperbolic tangent function, Nv = {u | (u,v) ∈

Ei } ∪ {v} is a set of neighborhood nodes around v (including v),

and p
(i,k)
u,v depicts the amount of the influence from u to v in the

k-th structural propagation at Gi .

By performing the propagation following Equation (2) up to L

iterations, each node gradually accumulates context information

in its neighborhood. In this process, p
(i,k)
u,v filters out unnecessary

neighborhood information, while keeping the essential context for

node ranking prediction.

Temporal propagation layer. Context features also encode the influ-

ence from past events. Intuitively, the activities occurred earlier
provide useful information for node rank estimation. Whenv ∈ Vi
and v ∈ Vi+1, we have

h
(i+1,0)
v = λv,ti ,ti+1h

(i,L)
v (3)

where λv,ti ,ti+1 suggests how much the context information on

nodev at time ti should be carried to ti+1, h
(i,L)
v is the hidden state

of v in Gi after structural propagation, and h
(i+1,0)
v is the initial

hidden state of v in Gi+1.

In this layer, λv,ti ,ti+1 serve as filters that only keep useful his-

torical context information for node ranking.

Output layer. This layer generates ranking score estimation based

on context features (i.e., hidden states) on each individual nodes.

For v ∈ V ′, when it is the case that i < s , v ∈ Vi , v < Vi+1, or the

case that v ∈ Vs , we have

ŷv = σ (wT
out · h

(i,L)
v + bout ) (4)

whereσ (·) is sigmoid function, h
(i,L)
v is the hidden state of the node

v after structural propagation, and wout ,bout are model parame-

ters that control the projection from the hidden state space of the

nodes to their ranking score space.

By default, TGNet generates the ranking score of a node v in

the last snapshot it appears, given the intuition that more reliable

decision can be made to rank v if all the relevant context of v is

observed. For standalone nodes with no edges in any timestamps,

their raking values are determined by their input feature vectors

and temporal propagation, i.e., they do not participate in structural

propagation. Our method can be readily extended to allow TGNet

to output ranking scores at user-specified timestamps.

4 INFLUENCE MODELING

In this section, we discuss influence modeling. With the belief that

the context of a node is shaped by what has happened in the “his-

tory” of its neighborhood, the key of influence modeling is to quan-

tify neighborhood impact.

“Node-centric” vs. “Edge-centric”. Conventional methods [3, 4,

8, 20, 25, 35] adopts “edge-centric” influence model, where the pa-

rameters are associated to edges. Nevertheless, the assumption of

fixed edge influence is hard to hold for context changes. Moreover,

it is daunting for users to choose edge types with expected gener-

alization power for unknown testing data.

In contrast, TGNet adopts an influence network layer, denoted as

InfNet, which uses a “node-centric” approach to model influence.

The layer InfNet is devised based on two intuitions: (1) The influ-

ence between two nodes is conditioned by their contexts; and (2) The

node context is determined by its hidden state. For example, a hostv

that generates observed critical alerts in a short period (encoded

by its hidden states) typically indicates that a future alert, when

connected to v , should be ranked higher (more suspicious).

Consider a nodev and its hidden state vectors hv . InfNet infers

the influence that affects v as:

infv = InfNet
(
Hv , hv , c

)
(5)

where (1)Hv includes neighborhood information ofv (to be dis-

cussed) and (2) c is a vector encoding side information of interest

(e.g., elapsed time) when applicable.

Influence network explicitly addresses the three challenges as

remarked earlier. (1) It captures influence that may be drifted along

with the evolution of node contexts, as the influence from new

nodes and edges is naturally encoded. (2) As node contexts are au-

tomatically constructed in TGNet, influence modeling is fully auto-

mated in accordance, minimizing the effort of user interference. (3)

The number of parameters in influence network is independent of

the size of the underlying graphs. This indicates the cost of model

learning and inference tend to be insensitive to the growth of G,

suggesting good scalability of TGNet over large graphs.

The framework TGNet gears two separate influence networks

in structural propagation and temporal propagation layer, respec-

tively. We next introduce the details.

Structural influence. TGNet undertakes an intuition of “my neigh-

bors decide who I am”. In particular, structural influence is cap-

tured by p
(i,k)
u,v in Equation (2). Suppose Gi is the snapshot under
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processing. For v ∈ Vi and u ∈ Nv , given Hv = [h
(i,k)
u ]u ∈Nv

that

includes hidden vectors of v’s neighbors, we compute influence in

v’s neighborhood p
(i,k)
v = [p

(i,k)
u,v ]T

u ∈Nv
as follows.

p
(i,k)
v = InfNet

(
Hv , h

(i,k)
v , ∅

)

= S(z
(i,k)
v )

(6)

where (1) S(·) is the softmax function, and (2) z
(i,k)
v = [z

(i,k)
u,v ]T

u ∈Nv
,

which is further derived by

z
(i,k)
u,v = wT

si ·

[
h
(i,k)
u

h
(i,k)
v

]

+ bsi , (7)

where wsi ,bsi are model parameters.

Model complexity. The size ofwsi is linear to the number of dimen-

sions in hidden state vectors. As wsi and bsi are shared among

all edges, TGNet is able to provide structural influence estimation

with a number of parameters, which is independent of the number

of edges.

Temporal influence. Equation (3) represents temporal influence

as λv,ti ,ti+1 , with an intuition that “what I am now” affects “what

I will be”. Unlike structural influence that is conditioned on the

contexts of two adjacent nodes, temporal influence is determined

by the context of a node itself and elapsed time. SupposeGi is the

snapshot under processing. When v ∈ Vi , and v ∈ Vi+1, we have

λv,ti ,ti+1 = InfNet
(
∅, h

(i,L)
v ,∆t

)

= σ
(
wT
ti ·

[
h
(i,L)
v

∆t

]
+ bt i

) (8)

where σ (·) is sigmoid function, ∆t = ti+1 − ti , and wt i ,bt i are

model parameters.

Model complexity. The size of wt i is linear to the number of di-

mensions in hidden state vectors, and wt i , bt i are shared among

all graph snapshots of G.

Inference Cost. Let the size of G (denoted as |G|) be |V | + |E |,

where E is the set of all the edges occurred in G. Consider a newly

arrived snapshot Gi at time ti . The result below verifies the effi-

ciency of TGNet in the inference cost.

Lemma 1: Upon the arrival of each graph snapshotGi , TGNet takes

O(|G|) time to rank the targeted nodes in Gi . �

We verify the inference cost as below. LetGi contain |Vi | nodes

and |Ei | edges. The inference cost for each Gi consists of: (1) the

structural propagation cost inO(L ∗dh ∗ |Ei |) time, for L rounds of

propagation, and each visits edges in Ei and updates structural in-

fluence inO(1) time; (2) the cost of temporal propagation isO(|Vi |),

as temporal influence is computed in O(1) time; and (3) O(|Vi |)

time for output layer. In practice, L, dh and din are relatively much

smaller. (for example, L ≤ 5 and dh ≤ 10 when accuracy converges

in our experiments). TGNet thus takes linear time (O(|G|)). This is

desired for tasks that require online prediction.

Neighbor Sampling. To further reduce the inference cost for large

graphs, TGNet introduces a neighbor sampling strategy to support

fast structural inference. In each iteration of inference, we ran-

domly sample a subset D(v) of the neighbors N (v) of each node

v in Gi (D(v) ⊂ N (v)). We then use Monte-Carlo approximation

as an unbiased estimator to estimate the hidden state value ofv by

accessing only the nodes inD(v), instead ofN (v) as in Equation (2).

Specifically, the propagation follows a revised Equation (2) as:

h̃
(i,k+1)
v ≈ tanh

( |N (v)|

|D(v)|

∑

u ∈D(v)

p
(i,k)
u,v h

(i,k)
u

)
(9)

The sampling reduces the cost of structural propagation by ac-

cessing only sampled nodes. Our model can be readily extended to

incorporate other samplingmethods that sparsify large networks [6].

We integrate neighbor sampling at runtime in each iteration to

avoid additional overhead to inference cost.

5 PARAMETER LEARNING

We next investigate parameter estimation in TGNet. Given labeled

data, we introduce an end-to-end training algorithm that jointly

learns the model parameters.

Objective function. LetΘ be parameters in TGNet andG = (G,D)

be training data, whereG is a temporal graph andD is labeled data

which contain a set of labeled node pairs. GivenΘ andG, we define

the learning objective function as

J (Θ,G) =
∑

〈u,v 〉∈D

E(Θ,u,v) (Model error)

+ β1R1(Θ) (Model complexity)

+ β2R2(Θ,G) (Graph smoothness)

where E(·) quantifies error made by Θ, R1(·) and R2(·) are two

regularization terms, which penalizes model complexity, and en-

courages graph smoothness (discussed below), respectively; and

β1, β2 are meta parameters that tune the impact from R1(·) and

R2(·) to the objective value, respectively.

Loss function. Following the convention in node ranking [3, 4], given

〈u,v〉 ∈ D (i.e., yu < yv ), the error made by Θ is calculated by the

loss function below:

E(Θ,u,v) = 1 − (ŷv − ŷu ) (10)

where ŷu and ŷv are estimated ranking scores viaΘ. As ranking

scores ŷu , ŷv ∈ [0, 1], E(Θ,u,v) ≥ 0.

We employL2 regularization to penalizemodel complexity. The

term R1(Θ) is defined as:

R1(Θ) =
∑

θ ∈Θ

‖θ ‖22 . (11)

Graph smoothness. Labeled data D could be sparse in practice. To

mitigate the risk of overfitting caused by label sparsity, TGNet ap-

plies graph smoothness constraints to penalize high dissimilarity

between a node and its neighbors. Indeed, real-life applications

suggest “birds of a feather” effect [40]. For example, a critical alert

of users’ interest suggests that the logs in its neighborhood could

also be of interest to the users.

Based on this intuition, we formulate smoothness constraints in

single snapshots as:

R2(Θ,G) =

s∑

i=1

∑

(u,v)∈Ei

‖h
(i,L)
u − h

(i,L)
v ‖22 (12)

where h
(i,L)
u is the hidden state of the node u in Gi after struc-

tural propagation. That is, we encourage low distance in hidden

state space between a node and its neighbors in G.
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Algorithm: TGNet learning

Input: training data G, learning rate α , threshold ϵ ;

Output: Optimal Θ∗ with respect to J (Θ, G)

1. Initialize Θ(0); j = 0;

2. repeat

3. j = j + 1

4. for θ ∈ Θ

/* Gradients calculation and parameter update*/

/* Equations (13) – (18) */

5. θ (j )
= θ (j−1) − α ·

∂ J (Θ(j−1),G)
∂θ

T

;

6. until | J (Θ(j ), G) − J (Θ(j−1), G) | < ϵ

7. Θ
∗
= Θ

(j )

8. return Θ
∗

Figure 3: Algorithm sketch of TGNet learning

Algorithm. We now introduce the learning algorithm of TGNet.

The TGNet learning algorithm, illustrated in Figure 3, follows back

propagation through time framework. It has the following steps.

(1) Initialize Θ (line 1);

(2) Iteratively compute error resulting from current Θ and update

Θ by their gradients (lines 2-5);

(3) The above step iterates until the objective function J (Θ,G) con-

verges (line 6).

Given objective function J , for θ ∈ Θ:

∂J

∂θ
=

1

|G|

∑

(G,D)

∑

〈u,v 〉∈D

(
∂ŷu

∂θ
−
∂ŷv

∂θ
) + 2β1θ

T (13)

+

2β2

|G|

∑

(G,D)

s∑

i=1

∑

(u,v)∈Ei

(h
(i,L)
u − h

(i,L)
v )T (

∂h
(i,L)
u

∂θ
−
∂h

(i,L)
v

∂θ
)

Below we highlight the key steps in the learning algorithms.

• Output layer. For θ ∈ Θ,

∂ŷv

∂θ
= σ ′(wT

out · h
(i,L)
v + bout ) · Zout (θ ) (14)

where

Zout (θ ) =




h
(i,L)
v

T
, θ = wout ;

1, θ = bout ;

wT
out ·

∂h
(i,L)
v

∂θ
, otherwise.

• Structural propagation layer. In this layer, the learning algorithm

performs the computation recursively,

∂h
(i,k)
v

∂θ
=tanh′(

∑

u ∈Nv

p
(i,k−1)
u,v h

(i,k−1)
u ) (15)

·
∑

u ∈Nv

(
S ′
(
wT
si ·

[
h
(i,k−1)
u

h
(i,k−1)
v

]

+ bsi
)

· h
(i,k−1)
u × Zsp (θ ) + p

(i,k−1)
u,v ·

∂h
(i,k−1)
u

∂θ

)

where

Zsp (θ ) =




[
h
(i,k−1)
u

h
(i,k−1)
v

]T
+wT

si ·



∂h
(i,k−1)
u

∂θ
∂h

(i,k−1)
v

∂θ


, θ = wsi ;

1 +wT
si ·



∂h
(i,k−1)
u

∂θ
∂h

(i,k−1)
v

∂θ


, θ = bsi

wT
si ·



∂h
(i,k−1)
u

∂θ
∂h

(i,k−1)
v

∂θ


, otherwise.

• Temporal propagation layer. If v ∈ Vi and v ∈ Vi−1, for θ ∈

{Win , bin ,wsi ,bsi ,wt i ,bt i }, the learning algorithm propagates

error in this layer as follows.

∂h
(i,0)
v

∂θ
=λv,ti−1,ti ·

∂h
(i−1,L)
v

∂θ
(16)

+ σ ′ (wT
ti ·

[
h
(i−1,L)
v

∆t

]
+ bt i

)
· h

(i−1,L)
v × Ztp (θ )

where

Ztp (θ ) =




[
h
(i−1,L)
v

∆t

]T
+wt i

T ·

[
∂h

(i−1,L)
v

∂θ

0

]

, θ = wt i ;

1 +wt i
T ·

[
∂h

(i−1,L)
v

∂θ

0

]

, θ = bt i ;

wt i
T ·

[
∂h

(i−1,L)
v

∂θ

0

]

, otherwise.

• Initialization layer. If v ∈ Vi and v < Vi−1, error propagation

moves into initialization layer as follows. Letwd be the d-th col-

umn ofWin , bd be the d-th entry in bin , and rin be the number

of rows in Win .

∂h
(i,0)
v

∂wd
= (tanh′(wT

d
· xv + bd ) · ed ) × xT , (17)

where ed is a rin×1 standard basis vector for dimensiond . More-

over,

∂h
(i,0)
v

∂bin
= tanh′(WT

in · xv + bin ) × 1T , (18)

where 1 is a rin × 1 vector with 1 in each individual entry.

Learning cost. We show that the learning of TGNet is feasible

over large graphs. Consider the training data G = (G,D), where

|D| is the number of node pairs inD. we show the following result.

Lemma 2: The learning cost of TGNet is in O(|G||D|) time. �

To see this, we observe that (1) it takes in total O(|D|) time to

compute the derivative ofwout , and (2) it takes in totalO(c ∗ |G| ∗

|D|) time to compute the derivate forwsi ,wt i andwin as the train-

ing algorithm traverses G at most |D| times by backpropagation.

Here c is a constant determined bymodel configuration, i.e., param-

eters L and din . Indeed, following practical assumptions in cost on

single core learning [11] (and verified in Section 6), the model pa-

rameters din and L are typically small in practice. Moreover, |D|

is much smaller than |G| for sparse labelled data.
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Dataset

#

snapshots
total # nodes ( |V |) total # edges ( |E |) |D |

SLD 19.4K 61.4K 258.1K 20K

IDS 66.7K 5.7M 11.5M 100K

MAG 12K 2.5M 16.2M 100K

APC 1.5K 2.1M 9.5M 100K

Table 2: Real-life temporal graphs

“Early terminating”. A bottleneck of TGNet learning is due to

the vanishing gradient in backpropagation. The gradients of loss

tend to decrease as we keep moving backward, and the backprop-

agation steps with small gradients still take time but contribute

little to the learning outcome. To reduce the cost incurred by these

steps, we apply a second threshold ϵ ′ to the gradients of nodes to

terminate their backpropagation early. That is, whenever the pro-

cess sees a gradient of nodev below ϵ ′ at a snapshot, TGNet stops

backpropagation ofv . The learning terminates early if all gradients

are smaller than ϵ ′ at a snapshot.

This optimization is quite effective: it can reduce 47% of the

learning cost on average over real-life data, with up to 3% loss of

model accuracy, as verified in Section 6.

6 EXPERIMENTS

Using both real-world and synthetic datasets, we evaluate (1) the

accuracy of TGNet, (2) the impact of model parameters which can-

not be learned from end-to-end training and size of training data,

and (3) efficiency of TGNet learning.

Dataset. We used four real-world datasets.

(1) SLD is a private system log dataset from NEC labs, including

30 days’ system logs generated by a cluster of 16 hosts. Using log

analysis tool NGLA [7], we obtained a graph with in total 19.4K

snapshots, 61.4K nodes, 258.1K edges, and 20K user-ranked alert

pairs by domain-experts. For SLD, we focus on ranking alert nodes.

(2) IDS (ISCX Intrusion detection data) [31] is a network intrusion

dataset that consists of in total 66.7K snapshots, 5.7M nodes, 11.5M

edges, and 100K user-ranked packet pairs. In this dataset, we are

interested in packet node ranking: the higher one packet node is

ranked, the more likely it indicates an attack.

(3) MAG (Microsoft academic graph) [32] is an academic network

with 12k snapshots, 2.5M nodes (e.g., authors, papers, institutions)

and 16.2M edges. We sampled 100K author ranking pairs based on

their H -index value, and focus on learning to rank author nodes.

(4) APC (Amazon product co-purchasing network) [24] is a network

describing the the product information and related reviews. It con-

tains 1.5k snapshots, 2.1 million nodes (e.g., products, customers),

and 9.5 million edges. We focus on learning to rank the salesrank

value for each product and sampled 100k product pairs.

To create temporal graphs as snapshots, we select time scales

that simulates update frequency of each datasets or the needs of

domain experts. We set interval as 1 second for SLD and IDS, and

one day forMAG andAPC. The datasets are summarized in Table 2.

We also generated synthetic datasets to evaluate the learning ef-

ficiency of our models. Using sampling with replacement, we gen-

erated larger sets of temporal graphs from SLD, IDS, MAG and

Influence
model

Structural
context

Temporal
context

Node
features

Smooth-
ness

TGNet node-centric yes yes yes yes

TGNet_BA edge-centric yes yes yes no

TGNet_IN node-centric yes yes yes no

SPR edge-centric yes no no no

DPR edge-centric yes no yes no

SVMRank - no no yes -

LRT - no no yes -

BGCM - no no yes -

Table 3: Comparison of TGNet and baseline methods

APC, respectively. Keeping the average size of snapshots, the to-

tal number of snapshots for a synthetic graph is increased up to 5

times of its real world counterpart.

Implementation. We implemented TGNet using Tensorflow [1].

We initialized parameters in TGNet following a general parameter

initialization method from [23]: randomly drawn from a distribu-

tion with mean zero and standard deviation. By default, we set dh
(number of dimensions in hidden states) as 5, and the default value

for L (number of iterations in structural propagation) is set as 3.We

apply Adammethod [22] with its default learning rate. For the best

performance, we set β1 = 1, β2 = 1, ϵ = 0.0001.

Ranking methods. We compared TGNet with seven baselines.

(1) TGNet variants. We develop two variants of TGNet, TGNet_IN

and TGNet_BA, by removing graph smoothness constraints, and

by removing both influence network and graph smoothness, re-

spectively. Instead of influence network, TGNet_BA follows edge-

centric methods [4] to model a uniform temporal influence with

edge parameters, by a decay function λv,ti ,ti+1 = e−ω∆t where ω

is the parameter used by all temporal propagation.

(2) PageRank variants. SPR [4] uses supervised PageRank to rank

nodes in static graphs, with edge-centric influence model (adopted

by the variant TGNet_BA of TGNet). For a fair comparison, we

merge all snapshots into a static graph as its input. We followed

the setting in [4] and used Newton method to train edge weights.

DPR [30] is an unsupervised PageRank algorithm that leverages

dynamic teleportation to capture how changes in external interest

influence the importance of a node.

(3) SVM variants. SVMRank [21] is a ranking algorithm that uses

SVM to learn node ranks, where the ranking is determined only

by learning from node features. We selected L1-norm and regu-

larization parameters for SLD, IDS and MAG as 0.1, 2.0, and 0.5,

respectively, such that SVMRank achieves the best performance.

Besides general ranking approaches, we also implemented two

domain-specific methods in system alert management, to evaluate

the effectiveness of TGNet in real-world applications.

(4) Domain specific methods. LRT is a ranking algorithm [18] that

applies statistical testing to discover interesting alerts and packets.

BGCM [16] is a statistical method that discovers critical alerts or

suspicious packets by finding a non-trivial weighted combination

of all atomic detectors. Neither of these approaches considers con-

text features or dynamics.

The above algorithms are summarized in Table 3.

Features. For SLD, each node feature vector has 125 dimensions,

including node type, alert- and log-related information. For IDS,
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BGCM LRT SVMRank SPR DPR TGNet_BA TGNet_IN TGNet

SLD 0.35 0.72 0.74 0.78 0.56 0.88 0.90 0.92

IDS 0.32 0.59 0.70 0.72 0.67 0.77 0.85 0.87

MAG - - 0.56 0.69 0.61 0.79 0.86 0.91

APC - - 0.52 0.55 0.45 0.73 0.82 0.88

Table 4: Accuracy (NDCG@k) comparison

each feature vector has 9 dimensions, including attributes such as

protocol type and packet length. Each feature vector in MAG has

45 dimensions, such as research topics and citations. ForAPC, each

feature vector has 15 dimensions, including the category and re-

view information. For synthetic datasets, the features are the same

as their corresponding real-world counterparts.

Metric. We evaluated the accuracy of TGNet and its baselines by

NDCG@k [26] (the top-k version of Normalized Discounted Cu-

mulative Gain), which is the DCG value of top-k output ranking

list normalized by the DCG value of top-k ground truth (optimal)

ranking list. The value of k can be determined in needs of domain

experts. For SLD, we set k based on the suggestion from our indus-

try partner which is the number of interested alerts. For IDS,MAG,

and APC, we consider the worst case and set k as the total number

of packets, authors, and products, respectively, to test our model.

More specifically, k is set as 29k , 0.9 million, 55k and 549k for SLD,

IDS,MAG and APC respectively.

To evaluate the accuracy, we performed 10-fold cross validation.

Average results of 20 times of executions are reported. All the ex-

periments were conducted on a machine powered by an Xeon pro-

cessor with 2.3GHz, 128GB memory, and a NVIDIA K80 GPU.

We next report the details of our experimental results.

Exp-1: Model Accuracy. Table 4 reports the accuracy of TGNet

and the baseline models. As LRT and BGCM are domain-specific

for alert ranking, their results onMAG and APC are omitted. In all

cases, it takes up to 50 iterations to train TGNet for SLD, and up

to 100 iterations for IDS,MAG and APC. We find the following.

(1) TGNet reaches the best performance comparedwith its variants.

Comparing TGNet_BA with TGNet_IN, influence networks bring

up to 12.3% improvement, while graph smoothness constraints ren-

der another 7.3% gain of accuracy in NDCG@k.

(2) Compared with SVMRank, SPR, and DPR, TGNet improves the

accuracy by 45%, 25% and 59% on average, respectively. Indeed,

SVMRank only exploits input node features, SPR uses only struc-

ture features, and DPR does not leverage labeled data. These jus-

tify the need of both structural and temporal context in super-

vised node ranking for temporal networks. Interestingly, TGNet

improves the accuracy the most for MAG, which indicates the im-

portance of exploiting temporal and structural context jointly in

determining the impact of authors in citation networks.

(3) TGNet outperforms domain-specific models LRT and BGCM

for alert ranking. While both LRT and BGCM assume the quality

of anomaly detectors is uniformly distributed, TGNetmakes a deci-

sion based on extracted context features: the quality of an anomaly

detector is conditioned by contexts. This key difference in TGNet

brings in average 95% improvement of accuracy in NDCG@k.

We next perform an in-depth analysis for critical parameters.

Impact of dh .We evaluate the impact ofdh to the accuracy of TGNet

in Figure 4, by varying it from 1 to 15. (1) The accuracy of all the
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Figure 4: Accuracy vs. dh (Number of hidden state dimensions)

three TGNet models increases when dh becomes larger. Indeed,

larger dh indicates a better capability of encoding complex con-

text features. (2) TGNet achieves good accuracy (NDCG > 0.92

for SLD) with small dh (≤ 5), and outperforms its less enhanced

variants.

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5

N
D

C
G

@
k

TGNet
TGNet_IN

TGNet_BA

(a) L(SLD)

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

N
D

C
G

@
k

TGNet
TGNet_IN

TGNet_BA

(b) L(IDS)

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

N
D

C
G

@
k

TGNet
TGNet_IN

TGNet_BA

(c) L(MAG)

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

N
D

C
G

@
k

TGNet
TGNet_IN

TGNet_BA

(d) L(APC)

Figure 5: Accuracy vs. L (# of structural propagation iteration)

Impact of L. As shown in Fig. 5, the accuracy of TGNet and its vari-

ants TGNet_BA and TGNet_IN increases when L is larger. This

indicates that collecting information from more hops of neighbors

improves the ranking quality. Meanwhile, prediction performance

tends to converge when L is small, with marginal improvement.

In SLD, TGNet achieves reasonable accuracy(NDCG > 0.93) with

small L (L ≤ 4).

Impact of |D |. We also evaluate the impact of the size of labeled

data |D | to the accuracy of TGNet. We “sparsify” the labeled data

with random sampling. Figure 6 shows the following. While all

the methods have higher accuracy when more labeled data are

given, TGNet needs the least amount of labeled data to achieve

the highest accuracy due to its more enhanced influence network

and smoothness constraints. For example, it achieves an accuracy

of NDCG@k=0.83 (resp. NDCG@k=0.85) using 40% (resp. 60%) la-

beled data in SLD (resp. IDS), while SVMRank has accuracy up to

0.74 (resp. 0.7) using all the labeled data.
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Figure 6: Accuracy. vs. Labeled data size |D |
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Figure 7: Learning cost vs. Graph size (# of snapshots)

Exp-2: Efficiency. We next evaluate the efficiency and scalability

of parameter learning of TGNet. The training of TGNet using GPU

implementation is quite efficient. It takes up to 4.5, 54, 48 and 29.6

minutes to train TGNet over SLD, IDS, MAG and APC with 19.4k

(15 days’ data with 20k training pairs), 66.7k (20 hours’ data with

100k training pairs), 12k (30 years’ data with 100k training pairs)

and 1.5k (5 years’ data with 100k training pairs) snapshots, respec-

tively. The training of TGNet is 10 times faster than that of SPR.

For a fair comparison to othermethods, we “downgraded” TGNet

to CPU-based implementations: TGNet(CPU)_opt and its variant

TGNet(CPU) without optimization. We compare both with CPU-

based SPR. By default, we use 20k of training node pairs to evaluate

the impact of different parameters on learning cost.

Impact of Graph Size. Varying the number of snapshots for syn-

thetic graphs from 10k to 60k , we report the learning time in Fig. 7.

(1)With optimizations (Section 5), it is feasible to train TGNetwith

CPUs over large graphs: TGNet(CPU)_opt incurs a comparable

cost with SPR, while achieving much higher accuracy. (2) The opti-

mization improves the learning efficiency better over larger tempo-

ral graphs. For example, for SLD, TGNet(CPU)_opt is twice faster

than TGNet(CPU) over a temporal graph with 60K snapshots.

Impact of dh . As shown in Figure 8(a), the learning cost of TGNet

and its variants increases when dh is larger, and the response time

grows (almost) linearly with dh .

Impact of L. Varying L from 1 to 5, the learning cost increases as

we perform more iterations of structural propagations, and is not
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Figure 8: Learning cost vs. parameters
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Figure 9: Learning cost vs. Labeled data size |D |

very sensitive (Figure 8(b)). This is consistent with the impact ofdh ,

and verifies our cost analysis in Section 5. We observe that TGNet

converges to high accuracy with small dh and L on the employed

datasets (see Exp-1).

Impact of |D |. The impact of the size of labeled data (|D |) is shown

in Figure 9. Use random sampling, we select a subset of examples

from the 20k training pairs for both SLD and IDS. While all meth-

ods take more time given more training examples, TGNet is the

least sensitive due to early terminating, and requires much less ex-

amples to achieve high accuracy (see Exp-1).

Exp-3: Real-world Case Study. To evaluate the application of

TGNet, we inspected and report the top ranked nodes over real-

world datasets in the following use cases.

Alert ranking. Figure 10 shows a top ranked alert a1, and a low

ranked alert a2, along with their contexts reported by TGNet over

SLD. We can readily trace the structural propagation (solid arrows)

associatedwithmaximum structural influence among all iterations,

and the temporal propagation (dashed arrows) associatedwith tem-

poral influence. This yields intuitive context (shown in Figure 10).

(1) TGNet gathered the context of a1 starting from the snapshot at

12:18:38, inwhich l1 and l2 suggest a potential issue in the SQLServer

at h1 as connection errors are reported. From 12:18:41 to 12:18:42,

multiple user login requests also fail at the SQLServer at h1. At

12:18:42, the evidence from different sources strongly suggest a

service failure in the SQLServer at h1, which needs attention. By

capturing the strong correlation among logs that are most relevant

to system admins’ interest, TGNet decides to rank a1 high.

(2) TGNet gives a2 a low priority. During training, TGNet learns

there is little correlation between what h1 has experienced and

logs from SQLServer Agent, and any alerts from SQLServer Agent

rarely trigger system admins’ interest.
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1. Critical alert 'a1' starts at 12:18:41, ends at 12:18:42, with reason 'Excessive

number of login failure message', relevant to log "l3,l4".

12:18:41 12:18:42

2. Ignore alert 'a2' starts at 12:18:42, ends at 12:18:42, with reason ‘Number of

service started message below threshold’, relevant to log "l5".

a1
(alert)

l3:Login

failure

(log)

SQL Server

Agent
(service)

0.89

0.77 0.81 0.65 0.78
0.39 0.07

0.97 0.12

0.63

12:18:38

(host)
h1

SQL

Server
(service) (host)

h1
(host)
h1

l4:Login

failure

(log)

l5:Service

Started

(log)

a1
(alert)

a2
(alert)

l1:SAP DB

connection

error
(log)

l2:SAP DB

connection

error

(log)

SQL

Server
(service)

SQL

Server
(service)

0.710.82 0.58

Figure 10: Contexts support alert ranking in SLD.

The two alerts, among other top ranked ones, have been vali-

dated by domain experts as critical events. This indicates the prac-

tical application of TGNet in system management. Other methods

fail to rank these alerts as expected.

Author ranking. Using structural and temporal context, TGNet can

suggest researchers with high academic influence with high rank-

ing scores (e.g., “Herbert A. Simon”). We found that SVMRank can

not rank these authors correctly using node features alone. The

authors ranked higher by SPR usually have more publications but

with relatively low total citations. TGNet distinguishes such sce-

narios and ranks those authors lowerwith enhanced influencemodel.

7 CONCLUSION

In this paper, we introduce TGNet, a novel graph neural network

that explicitly tackles challenges in node ranking for temporal graphs.

We propose influence network to boost the capability of modeling

context dynamics, coupled with graph smoothness constraints to

cope with label sparsity. We develop an end-to-end learning algo-

rithm for TGNet with optimization techniques. Our experimental

study verifies that TGNet outperforms the baselines in terms of ac-

curacy, and can be generalized from sparse labeled data. Our case

study verifies that TGNet yields intuitive context of node ranks

that can be interpreted.
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