WASHINGTON STATE @ UNIVERSITY

TGNet: Learning to Rank Nodes in Temporal Graphs

Qi Song! Bo Zong? Yinghui Wu'-3
Lu-An Tang?2 Hui Zhang? Guofei Jiang? Haifeng Chen?

1 WASHINGTON STATE 2 NEC Laboratories 3 V/

([JNIVERSITY
@ Relentless pasﬁnrg ?nr;!/g?n Pac'i“ﬂg!ﬂgg‘y%west

@ Node Ranking in temporal graphs

= Temporal graphs have been widely applied to model dynamic networks.

Automated systems Computer networks Citation networks

5

p=

Rodrigyez O.
Kergaithatosn w.
Dumigrica O onjn J Conger D Ke
el MNaosgu C.
McAgiy A
DadislJ. MaS. wikamspnago O M Slerr@]!';s(dsg.gﬂ -

B
Willargs R Browp s S8t
Andeggon T. Aiddisss o
B

TR {dsey B
RAYNGIATRIDL S g s o RRORSR
S wiigen c. Papp@no L. Suitpargpitaya S.
Poellhgber Bizicgs R, F. LL./H = S S K

Magssheel 5 C o . JDE

=
]

ritchend D.E
‘Sealep D.T
Eynen RSUMBGS.
DeBOerategiow L
Ho®.D.
Harrison L

Anomaly detection Attack detection Author ranking
= Ranking models are desired to suggest and maintain the nodes with high
priority in dynamic graphs.

" The node ranks can be influenced by rich context from heterogeneous
node information, network structures, and temporal perspectives.

O

nking in a heterogeneous system alert network.

= A fraction of a real-world heterogeneous temporal information network from data

center monitoring.

(host) (host)

d X
N>

"Database”

(log) (log)
[, i@ izl
)

(alert) (alert)

(service)

(h9§0 (service)

"Network"
>
(log) (log)

LE Le

[a, a,
|(alerzj (alert)

B

e o —

(ZOg) 1log) (log)
w1

\
a; ‘If a, a,

(alert) (alert) (alert)=

G, "03:33 am”

* * G, "09:44 am”

G "09:45 am”

"Log 'I1" at 3:33 am, Host 'hy’ /

- with service "Database"
. & content 'login failure’

Log 'I3' at 9:44 am, Host 'hp'

with service "Network"

. & content 'Connection failed’

f(Alert a5’ at 9:45 am, relevant\

§'to log [, and log [;,reason: =
{' "Unusual small # of logs' _'l

,/: impact of historical or future

I Temporal context: suggests the

| events to current decisions.

' Structural context: captures the :
4 features in the neighborhood of I
A | nodes at each snapshot. 1

Node attributes: encodes the !
| input information of a node. I

@ Challenges

= |Learning to rank nodes in temporal graphs is more challenging than its counterpart
over static graphs:

1
context can be used to differentiate the roles ' —=) . !
that different nodes play in node ranking. E e e f_o_r _n_o_d € ran £< ne. :

" I r

! Context learning: structural and temporal 1 Automated approach to learn context features !
1

1

1

r r
' Context dynamics: context features bear | — Effective models that can capture context
I constant changes over time. ! I evolution over time.

-
Label sparsity: labels provided by users are | — I Effective learning that can be generalized
' sparse and cover a small fraction of nodes ! from sparsely labeled data.

I r
' Time cost: fast learning and ranking upon the | : ! Effective optimization and provable
I arrival of new nodes. ! I performance guarantees.

_ Learning to rank nodes in temporal graphs

= Input: training data G consists of a temporal graph G and labeled data D, a ranking
function space M, and an error function j(-) that measures the ranking error.

= Qutput: an optimal function g* € M such that the ranking error j(g* G) is minimized.

= Pipeline:

_ User-ranked nodes /" TGNet |\

(n3,mg) (g, my) (g, ma) | ~—_ [Model]
S

Learning

v W

. — Model
\ _____ I§I9_d_e__r_a_r1lf|_n_g _____ /\[Inference]/

(
1
v

S
u
A
=
>
A
S
N

Overview of TGNet Model

Four components:
Initialization layer: projects input feature vector into hidden state space;

Structural propagation layer: exchanges neighborhood information in a snapshot;
Temporal propagation layer: propagates temporal influence between snapshots;
Output layer: transforms hidden states to ranking scores.

’, .
% Input feature Vector Hidden State Vector % Ranking score

(4)Output
(2)Structural Propogation

’%9%_’*@ (3)Temporal > —
(L) (0) (1) (L) Propagation (0)

(DInitialization

7

Snapshot: G, ; G, G

‘&

@ TGNet: Initialization Layer

= \When a node first occurs:

_———— ———\f--‘ --\

-h“ = tanh<w{n; %y ,+.bm9

Hidden state vector Input feature vector Parameter

% Input feature Vector %g Hidden State Vector ﬁ Ranking score

(4)Output
(2)Structural Propogation
— >§g%->ggﬁ->m—> >i
(3)Temporal
(L) (0) (1) (L) Propagation (0)
(1)Initialization
(3
7 7
i+1

Snapshot:G; 4 G G

@ TGNet: Structural propagation layer

= For all nodes within a snapshot: iteratively performing local information
propagation (for L times)

—— - —— -

Hidden state vector Structural influence factor

o
) %
% Input feature Vector %g Hidden State Vector ﬁ Ranking score (©) O
o
= B
o
(4)Output [e]
T (2)Structural Propogation &
(3)Temporal nan o
(L) 0) (1) (1) | propagarion] §(0) /(L) S
(DlInitialization o h(l;k"' 1)
F — v
7. 7 9
o
Snapshot:G, ; G Gir1 °
(i.k)
/ hu

@ TGNet: Temporal propagation layer

= For nodes exist in two continuous snapshots:

— e ——— - —— -

{ h(i+1,0)‘: _ -'/1 fh(i,L)E

% Input feature Vector %g Hidden State Vector ﬁ Ranking score

(4)Output
(2)Structural Propogation
—> >§8$->%%§->_"—> >
(3)Temporal
(L) (0) (1) (L) Propagation (0)
(DInitialization
{ "
7. 7
Snapshot:G;_; Gi Git1

hl(;i'L) h£i+1'0)

@ TGNet: Output layer

= For nodes in the last snapshot they appear:

Ranking value Hidden state vector Parameter

% Input feature Vector %g Hidden State Vector ﬁ Ranking score

= = o
(4)Output O\ Wout
(2)Structural Propogation o~
—> >§88->%%§->_ —> >ii O
(3)Temporal - A~
® (0) (1) L) | ropagaion| $0) o %
(DInitialization —/
" [L)
* h(l'
7 7 v
i+1

Snapshot:G; 4 G G;

@ Influence modeling

= Edge-centric: parameters are associated to edges;
— Can not deal with context changes, daunting for users to choose edge types.

= Node-centric (influence network):
— The influence between two nodes is conditioned by their contexts;

— The node context is determined by its hidden state.
(LK)
h

-)
i u
po™ = softmax(wl - [h(i,k)

v

+bg) Rottins = W l A l +byy)

h,(;i'k)
o

pu,v

hy o

Temporal influence

Structural influence

= Inference cost: 0(|G])
= Neighbor sampling: randomly sample a subset of the neighbors of each node.

= (Objective function:

Loss function: measure the error made by 0

o N st L
J(6,G) = Z E©,u,v)---" E@uv)=1-0—)
il (wv)eD ____ . L, regularization: penalize model complexity
Parameters +£!_5}_-(_9-)_ . R,(©) = |0]|?
+B,R,(0,G) -

- Graph smoothness: penalize high dissimilarity
s~ betweensa node and its neighbors

me9=3 . -

i=1 (u,v)EE;

= Gradient Descent
— Iteratively compute error resulting from current ® and update 0 by their gradients.

= |earning cost: 0(|G||D|)

LA

Dataset

— System log data (SLD)
— ISCX Intrusion detection data (IDS)

— Microsoft academic graph (MAG)

— Amazon co-purchasing network (APC)

Dataset #ssl:Latz- nﬁdoefs eﬁgoefs F ofp1;ri.':|‘isning
SLD 19.4K 61.4K 258.1K 20K
IDS 66.7K 5.7M 11.5M 100K
MAG 12K 2.5M 16.2M 100K
APC 1.5K 2.1M 9.5M 100K

Experiment Setting

Baseline:

— TGNet_BA, TGNet_IN

— Supervised PageRank (SPR)

— Dynamic PageRank (DPR)

— SVMRank

— Alert fusion for intrusion detection (LRT)
— Network anomaly detection (BGCM)
Metric:

— Top-k version of Normalized Discounted
Cumulative Gain (NDCG@k)

— k is determined by domain experts

@ Experiment Results

= Accuracy comparison

BGCM LRT SVMRank SPR DPR TGNet_BA TGNet_IN TGNet
SLD 0.35 0.72 0.74 0.78 0.56 0.88 0.90 0.92
IDS 0.32 0.59 0.70 0.72 0.67 0.77 0.85 0.87
MAG - - 0.56 0.69 0.61 0.79 0.86 0.91
APC - - 0.52 0.55 0.45 0.73 0.82 0.88

= Accuracy varying parameters

1 1 TGNet —>%— SPR ——

TGNet_IN —@®—— SVMRank —H—

1TGNet BA —@— LRT —6—
T T T T

09t] 09
-~ -~
® ® 20,
Sos} - So0.8 S)
a a O]
Z z Ro.
0.7h TGNet —%— | 0.7 TGNet —%— | 2
TGNet IN —o— TGNet IN —o—
TGNet BA —#&— TGNet BA —#&— | | | | |
065 5 10 15 065 3 3 i 5 20% 40% 60% 80% 100%

Varying d,, (number of hidden state Varying L (# of structural propagation Varying labeled data size: TGNet
dimension): TGNet achieves good iteration): prediction performance needs the least amount of labeled
accuracy with small d,. tends to converge when L is small. data to achieve the highest accuracy.

Experiment Results

= Learning cost = Case study

/1. Critical alert ‘a,’ starts at 12:18:41, ends at 12:18:42, with reason 'Excessive A
number of login failure message', relevant to log "l;,1,".

2. Ignore alert 'a,’ starts at 12:18:42, ends at 12:18:42, with reason ‘Number of

TGNET(GPU) - TGNet(CPU)_opt =+
TGNet(CPU) > SPR >
T T

500
_service started message below threshold’, relevant to log "I5".
f‘-a; i o8 11058 0.63 {1 o7t
E ! B e T e TQOr el T .
g SQL . i ,-* - aSQL iy A SQL SQL Server
E ' Server | i Server Agent |
=00t 1 (host) ervzce) | (host) (servzce) (host) (servzce) (servzce)
10k 20k 30k 40k 50k 60k . o 071
Varying graph size on synthetic SLD: ' . /3 Login § § l4 Login Is:Service i
training is 10 times faster than SPR '/1 'SAP DB 1,:SAP DB | fa’/ure | 1 failure Started ;
iconnection connection} | (log) |o.89 1 (log) |o.97 (log) 0.12]
; error error ' o :
- dog) (log) b
a, a a,
i - (alert) (alert) (alert)

12:18:38 12:18:41 12:18:42

= TGNet: a novel graph neural network network
— Explicitly tackles challenges in node ranking for temporal graphs;
— Influence network: boost the capability of modeling context dynamics;
— Graph smoothness: cope with label sparsity;
— End-to-end learning algorithm with optimization techniques.

Sponsored by:

L

Thank you!

