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@ Node Ranking in temporal graphs

= Temporal graphs have been widely applied to model dynamic networks.

Automated systems Computer networks Citation networks
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Anomaly detection Attack detection Author ranking
= Ranking models are desired to suggest and maintain the nodes with high
priority in dynamic graphs.

" The node ranks can be influenced by rich context from heterogeneous
node information, network structures, and temporal perspectives.



O

nking in a heterogeneous system alert network.

= A fraction of a real-world heterogeneous temporal information network from data

center monitoring.
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I Temporal context: suggests the

| events to current decisions.

' Structural context: captures the :
4 features in the neighborhood of I
A | nodes at each snapshot. 1

Node attributes: encodes the !
| input information of a node. I



@ Challenges

= |Learning to rank nodes in temporal graphs is more challenging than its counterpart
over static graphs:

1
context can be used to differentiate the roles ' —=) . !
that different nodes play in node ranking. E e e f_o_r _n_o_d € ran £< ne. :
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! Context learning: structural and temporal 1 Automated approach to learn context features !
1

1

1

r r
' Context dynamics: context features bear | — Effective models that can capture context
I constant changes over time. ! I evolution over time.

-
Label sparsity: labels provided by users are | — I Effective learning that can be generalized
' sparse and cover a small fraction of nodes ! from sparsely labeled data.

I r
' Time cost: fast learning and ranking upon the | : ! Effective optimization and provable
I arrival of new nodes. ! I performance guarantees.



_ Learning to rank nodes in temporal graphs

= Input: training data G consists of a temporal graph G and labeled data D, a ranking
function space M, and an error function j(-) that measures the ranking error.

=  Qutput: an optimal function g* € M such that the ranking error j(g* G) is minimized.

= Pipeline:
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Overview of TGNet Model

Four components:
Initialization layer: projects input feature vector into hidden state space;

Structural propagation layer: exchanges neighborhood information in a snapshot;
Temporal propagation layer: propagates temporal influence between snapshots;
Output layer: transforms hidden states to ranking scores.
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@ TGNet: Initialization Layer

= \When a node first occurs:
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@ TGNet: Structural propagation layer

= For all nodes within a snapshot: iteratively performing local information
propagation (for L times)
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@ TGNet: Temporal propagation layer

= For nodes exist in two continuous snapshots:
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@ TGNet: Output layer

= For nodes in the last snapshot they appear:
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@ Influence modeling

= Edge-centric: parameters are associated to edges;
— Can not deal with context changes, daunting for users to choose edge types.

= Node-centric (influence network):
— The influence between two nodes is conditioned by their contexts;

— The node context is determined by its hidden state.
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= Inference cost: 0(|G])
= Neighbor sampling: randomly sample a subset of the neighbors of each node.



= (Objective function:

Loss function: measure the error made by 0
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= Gradient Descent
— Iteratively compute error resulting from current ® and update 0 by their gradients.

= |earning cost: 0(|G||D|)
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Dataset

— System log data (SLD)
— ISCX Intrusion detection data (IDS)

— Microsoft academic graph (MAG)

— Amazon co-purchasing network (APC)

Dataset #ssl:Latz- nﬁdoefs eﬁgoefs F ofp1;ri.':|‘isning
SLD 19.4K 61.4K 258.1K 20K
IDS 66.7K 5.7M 11.5M 100K
MAG 12K 2.5M 16.2M 100K
APC 1.5K 2.1M 9.5M 100K

Experiment Setting

Baseline:

— TGNet_BA, TGNet_IN

— Supervised PageRank (SPR)

— Dynamic PageRank (DPR)

— SVMRank

— Alert fusion for intrusion detection (LRT)
— Network anomaly detection (BGCM)
Metric:

— Top-k version of Normalized Discounted
Cumulative Gain (NDCG@k)

— k is determined by domain experts



@ Experiment Results

= Accuracy comparison

BGCM LRT SVMRank SPR DPR TGNet_BA TGNet_IN TGNet
SLD 0.35 0.72 0.74 0.78 0.56 0.88 0.90 0.92
IDS 0.32 0.59 0.70 0.72 0.67 0.77 0.85 0.87
MAG - - 0.56 0.69 0.61 0.79 0.86 0.91
APC - - 0.52 0.55 0.45 0.73 0.82 0.88

= Accuracy varying parameters
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Varying d,, (number of hidden state Varying L (# of structural propagation Varying labeled data size: TGNet
dimension): TGNet achieves good iteration): prediction performance needs the least amount of labeled
accuracy with small d,. tends to converge when L is small. data to achieve the highest accuracy.



Experiment Results

= Learning cost = Case study

/1. Critical alert ‘a,’ starts at 12:18:41, ends at 12:18:42, with reason 'Excessive A
number of login failure message', relevant to log "l;,1,".
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= TGNet: a novel graph neural network network
— Explicitly tackles challenges in node ranking for temporal graphs;
— Influence network: boost the capability of modeling context dynamics;
— Graph smoothness: cope with label sparsity;
— End-to-end learning algorithm with optimization techniques.
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