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Node Ranking in temporal graphs

§ Temporal graphs have been widely applied to model dynamic networks.

§ Ranking models are desired to suggest and maintain the nodes with high 
priority in dynamic graphs.

§ The node ranks can be influenced by rich context from heterogeneous 
node information, network structures, and temporal perspectives.
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§ A fraction of a real-world heterogeneous temporal information network from data 
center monitoring.

Alert ranking in a heterogeneous system alert network.

Structural context: captures the 
features in the neighborhood of 
nodes at each snapshot.

Temporal context: suggests the 
impact of historical or future 
events to current decisions.
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Challenges

§ Learning to rank nodes in temporal graphs is more challenging than its counterpart 
over static graphs:

Context learning: structural and temporal 
context can be used to differentiate the roles 

that different nodes play in node ranking.

Automated approach to learn context features 
for node ranking.

Context dynamics: context features bear 
constant changes over time.

Effective models that can capture context 
evolution over time.

Label sparsity: labels provided by users are 
sparse and cover a small fraction of nodes

Effective learning that can be generalized 
from sparsely labeled data.

Time cost: fast learning and ranking upon the 
arrival of new nodes.

Effective optimization and provable 
performance guarantees.



Learning to rank nodes in temporal graphs 
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§ Input: training data , consists of a temporal graph - and labeled data ., a ranking 
function space /, and an error function 0(2) that measures the ranking error.

§ Output: an optimal function 4∗ ∈ / such that the ranking error 0(4∗, ,) is minimized.
§ Pipeline:



§ Four components:
─ Initialization layer: projects input feature vector into hidden state space;

─ Structural propagation layer: exchanges neighborhood information in a snapshot; 
─ Temporal propagation layer: propagates temporal influence between snapshots;
─ Output layer: transforms hidden states to ranking scores.
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§ When a node first occurs: 
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§ For all nodes within a snapshot: iteratively performing local information 
propagation (for L times)

TGNet: Structural propagation layer
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Hidden state vector Structural influence factor
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§ For nodes exist in two continuous snapshots:

TGNet: Temporal propagation layer

!"($%&,() = +",,-,,-./!"
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Hidden state vector Temporal influence factor
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§ For nodes in the last snapshot they appear:

TGNet: Output layer
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Hidden state vector ParameterRanking value
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§ Edge-centric: parameters are associated to edges;
─ Can not deal with context changes, daunting for users to choose edge types.

§ Node-centric (influence network): 
─ The influence between two nodes is conditioned by their contexts;
─ The node context is determined by its hidden state.

§ Inference cost: O(|$|)
§ Neighbor sampling: randomly sample a subset of the neighbors of each node.

Influence modeling
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§ Objective function:

§ Gradient Descent
─ Iteratively compute error resulting from current Θ and update Θ by their gradients.

§ Learning cost: O(|%||&|)

Parameter learning
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ℒ7 regularization: penalize model complexity
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Graph smoothness: penalize high dissimilarity 
between a node and its neighbors
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§ Dataset 
─ System log data (SLD)
─ ISCX Intrusion detection data (IDS)
─ Microsoft academic graph (MAG)
─ Amazon co-purchasing network (APC)

Experiment Setting

Dataset #Snap-
shots

# of 
nodes

# of 
edges

# of Training 
pairs

SLD 19.4K 61.4K 258.1K 20K

IDS 66.7K 5.7M 11.5M 100K

MAG 12K 2.5M 16.2M 100K

APC 1.5K 2.1M 9.5M 100K

§ Baseline:
─ TGNet_BA, TGNet_IN
─ Supervised PageRank (SPR)
─ Dynamic PageRank (DPR)
─ SVMRank
─ Alert fusion for intrusion detection (LRT)
─ Network anomaly detection (BGCM)

§ Metric:
─ Top-k version of Normalized Discounted 

Cumulative Gain (NDCG@k) 
─ k is determined by domain experts



§ Accuracy comparison

§ Accuracy varying parameters

Experiment Results

BGCM LRT SVMRank SPR DPR TGNet_BA TGNet_IN TGNet

SLD 0.35 0.72 0.74 0.78 0.56 0.88 0.90 0.92

IDS 0.32 0.59 0.70 0.72 0.67 0.77 0.85 0.87

MAG - - 0.56 0.69 0.61 0.79 0.86 0.91

APC - - 0.52 0.55 0.45 0.73 0.82 0.88
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Varying dh (number of hidden state 
dimension): TGNet achieves good 

accuracy with small dh.

Varying L (# of structural propagation 
iteration): prediction performance 
tends to converge when L is small.

Varying labeled data size: TGNet
needs the least amount of labeled 

data to achieve the highest accuracy.



§ Learning cost

Experiment Results
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Varying graph size on synthetic SLD: 
training is 10 times faster than SPR

§ Case study

1. Critical alert 'a1' starts at 12:18:41, ends at 12:18:42, with reason 'Excessive
number of login failure message', relevant to log "l3,l4".

12:18:41 12:18:42

2. Ignore alert 'a2' starts at 12:18:42, ends at 12:18:42, with reason ‘Number of
service started message below threshold’, relevant to log "l5".
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§ TGNet: a novel graph neural network network
─ Explicitly tackles challenges in node ranking for temporal graphs;
─ Influence network: boost the capability of modeling context dynamics;
─ Graph smoothness: cope with label sparsity;
─ End-to-end learning algorithm with optimization techniques.

Conclusion

Sponsored by: 



Thank you!


