

TGNet: Learning to Rank Nodes in Temporal Graphs

Qi Song¹ Bo Zong² Yinghui Wu^{1,3} Lu-An Tang² Hui Zhang² Guofei Jiang² Haifeng Chen²

Node Ranking in temporal graphs

Temporal graphs have been widely applied to model dynamic networks.

Automated systems

Computer networks

Citation networks

Anomaly detection

Attack detection

Author ranking

Pritchend D.E Seat

- Ranking models are desired to suggest and maintain the nodes with high priority in dynamic graphs.
- The node ranks can be influenced by rich context from heterogeneous node information, network structures, and temporal perspectives.

 A fraction of a real-world heterogeneous temporal information network from data center monitoring.

 Learning to rank nodes in temporal graphs is more challenging than its counterpart over static graphs:

- Input: training data G consists of a temporal graph G and labeled data D, a ranking function space M, and an error function j(·) that measures the ranking error.
- Output: an optimal function $g^* \in \mathbb{M}$ such that the ranking error $j(g^*, \mathbb{G})$ is minimized.
- Pipeline:

- Four components:
 - Initialization layer: projects input feature vector into hidden state space;
 - Structural propagation layer: exchanges neighborhood information in a snapshot;
 - Temporal propagation layer: propagates temporal influence between snapshots;
 - Output layer: transforms hidden states to ranking scores.

When a node first occurs:

 For all nodes within a snapshot: iteratively performing local information propagation (for L times)

For nodes exist in two continuous snapshots:

For nodes in the last snapshot they appear:

- Edge-centric: parameters are associated to edges;
 - Can not deal with context changes, daunting for users to choose edge types.
- Node-centric (influence network):
 - The influence between two nodes is conditioned by their contexts;
 - The node context is determined by its hidden state.

- Inference cost: 0(|G|)
- Neighbor sampling: randomly sample a subset of the neighbors of each node.

Objective function:

- Gradient Descent
 - Iteratively compute error resulting from current Θ and update Θ by their gradients.
- Learning cost: 0(|G||D|)

Experiment Setting

- Dataset
 - System log data (SLD)
 - ISCX Intrusion detection data (IDS)
 - Microsoft academic graph (MAG)
 - Amazon co-purchasing network (APC)

Dataset	#Snap- shots	# of nodes	# of edges	# of Training pairs	
SLD	19.4K	61.4K	258.1K	20K	
IDS	66.7K	5.7M	11.5M	100K	
MAG	12K	2.5M	16.2M	100K	
APC	1.5K	2.1M	9.5M	100K	

- Baseline:
 - TGNet_BA, TGNet_IN
 - Supervised PageRank (SPR)
 - Dynamic PageRank (DPR)
 - SVMRank
 - Alert fusion for intrusion detection (LRT)
 - Network anomaly detection (BGCM)
- Metric:
 - Top-k version of Normalized Discounted Cumulative Gain (NDCG@k)
 - k is determined by domain experts

Experiment Results

Accuracy comparison

	BGCM	LRT	SVMRank	SPR	DPR	TGNet_BA	TGNet_IN	TGNet
SLD	0.35	0.72	0.74	0.78	0.56	0.88	0.90	0.92
IDS	0.32	0.59	0.70	0.72	0.67	0.77	0.85	0.87
MAG	-	-	0.56	0.69	0.61	0.79	0.86	0.91
APC	-	-	0.52	0.55	0.45	0.73	0.82	0.88

Accuracy varying parameters

Varying d_h (number of hidden state dimension): TGNet achieves good accuracy with small d_h .

Varying *L* (# of structural propagation iteration): prediction performance tends to converge when *L* is small.

Varying labeled data size: TGNet needs the least amount of labeled data to achieve the highest accuracy.

Learning cost

Varying graph size on synthetic SLD: training is 10 times faster than SPR

Case study

1. Critical alert ' a_1 ' starts at 12:18:41, ends at 12:18:42, with reason 'Excessive number of login failure message', relevant to log " l_3, l_4 ". 2. Ignore alert 'a₂' starts at 12:18:42, ends at 12:18:42, with reason 'Number of service started message below threshold', relevant to $\log "l_5"$. 0.82 0.58 0.63 0.71 SQL Server SQL **SOL** SOL h_1 h, Server n_1 Server Agent Server (host) (service) (host) (service) (service) (host) (service) 0.07 0.39 0.77 0.81 0.65 I₅:Service I₃:Login I₄:Login failure failure Started I1:SAP DB $I_2:SAP DB$ (log) (log)(log)connection connection 0.89 0.97 0.12 error error (log) (log) a_1 a_1 a_2 (alert) (alert) (alert) 12:18:38 12:18:41 12:18:42

- TGNet: a novel graph neural network network
 - Explicitly tackles challenges in node ranking for temporal graphs;
 - Influence network: boost the capability of modeling context dynamics;
 - Graph smoothness: cope with label sparsity;
 - End-to-end learning algorithm with optimization techniques.

Sponsored by:

