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Abstract
Recent years have witnessed increasing interest in few-shot knowl-
edge graph completion (FKGC), which aims to infer novel query
triples for few-shot relations from limited references. Despite promis-
ing progress, existing methods face two key challenges: (1) They
often overlook rich higher-order neighbors, while traditional high-
order aggregation methods are prone to introducing noise and lack
effective alignment across multi-view neighborhood information.
(2) Meta-learning methods over-rely on embeddings, making them
susceptible to spurious relational patterns. Meanwhile, LLM-based
methods, despite their potential, suffer from hallucinations and
input constraints. To this end, we propose a novel framework that
combines meta-learning, enhanced via a Local-Global Contrastive
network, with LLM-guided Contextual Refinement (LGC-CR). At
the data level, we design a local-global contrastive network to
jointly aggregate relevant local features and capture stable global
representations while filtering high-order noise, then align these
two views through a dual contrast module to ensure consistency. At
the model level, we employ an LLM refinement module, which re-
trieves relevant contexts to construct prompts and applies a knowl-
edge selector to identify high-quality facts based on diversity and
centrality, enabling efficient fine-tuning of LLMs to refine the pre-
liminary predictions of meta-learning. The experimental results
demonstrate that LGC-CR delivers better and more robust perfor-
mance than state-of-the-art baselines, with Hit@1 improvements
of 8.1%, 21.7%, and 20.6% on NELL, Wiki, and FB15K, respectively.

CCS Concepts
• Computing methodologies→Machine learning.
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1 Introduction
Knowledge Graphs (KGs), serving as structured semantic knowl-
edge bases [35, 37], consist of a series of factual triples in the for-
mat of (head entity, relation, tail entity). KGs play a pivotal role
∗Corresponding author.
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Figure 1: Two challenges in FKGC. (Top) Noisy, underutilized
high-order neighbors andmisaligned local/global views. (Bot-
tom) Pattern bias inmeta-learning and hallucination in LLM.

in intelligent applications, including question-answering [5, 31],
recommendation systems [9], and retrieval-augmented generation
[13, 29]. However, with the continuous emergence of new knowl-
edge, real-world KGs often face the challenge of incompleteness [6],
manifested as missing or underrepresented relations and entities.
This motivates research on Knowledge Graph Completion (KGC),
which aims to infer missing elements in incomplete facts. Typical
KGC methods address this task by learning embeddings based on
either graph structures [2, 41] or text descriptions [25, 28].

Despite their success, embedding-based KGC methods often re-
quire abundant training triples for a certain type of relation. How-
ever, relations in real-world KGs usually exhibit a long-tail distribu-
tion, with most types of relations being associated with only a few
triples. About 10% of the relation types in the Wikidata dataset con-
tain fewer than 10 triples [3]. Moreover, in practical scenarios [10]
where KGs are dynamically updated, newly introduced relations
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often face the cold-start problem with no available triples, which
leads to a sharp performance drop for these methods.

To address this challenge, few-shot knowledge graph completion
(FKGC) methods have been proposed, most of which aim to pre-
dict the missing tail entity 𝑡 in a query triple (ℎ, 𝑟, ?) only given 𝐾
support triples [39] for the few-shot relation 𝑟 , where 𝐾 is typically
a small number. Current methods include model-agnostic meta-
learning methods (e.g., MetaR [3], GANA [27], CFKGC [22]), which
aim to learn the features of associated triples in training tasks for
generalization to new tasks, and metric-based methods (e.g., FAAN
[30], CIAN [19], SuperRL [11]), which learn matching functions
from training tasks and apply them to unseen tasks. Since task rela-
tion embeddings are unknown, previous methods mostly leverage
the local neighbors of entity pairs to enhance relation prototype
learning. Moreover, with the rapid development of large language
models (LLMs), some recent methods [1, 16, 18, 43] directly use
LLMs for graph completion, which aim to exploit their pretrained
knowledge and contextual reasoning capabilities. Despite progress,
current approaches still face two major challenges:

Challenge 1: Existing methods struggle to leverage noisy
high-order neighborhoods and alignmulti-view information.
They over-rely on local neighbors while ignoring the rich seman-
tics of high-order neighborhoods. Traditional aggregation methods
often introduce noise and struggle to integrate multi-view neigh-
borhood information. As shown in Figure 1, for query (Churchill,
led, WWII Effort), the direct neighbors(such as UK and Parliament)
only offer superficial details related to nationality or employment,
failing to reflect Churchill’s leadership role inWorld War II. Further-
more, many entities(e.g., Churchill and Chamberlain ) in KGs share
common local neighbors, making it difficult to distinguish their
roles. In contrast, high-order neighbors like Allied Forces in the
global view enrich Churchill’s portrayal inWorld War II, but may
also introduce irrelevant noise (e.g., (Parliament, deliberate, Brexit)).
Additionally, representations from local and global views may be
misaligned, which undermines reasoning stability and robustness.

Challenge 2: Embedding-based meta-learners are vulner-
able to pattern bias, while LLMs suffer from hallucination
and input constraints. As shown in Figure 1, embedding-based
meta learning may overfit to frequent relational patterns in the
support set (e.g., Eileen Gu and Curry), which can mislead inference
on query entities like Nikola Jokić, especially for long-tail cases. On
the other hand, LLM-based methods, while powerful in language
understanding, are susceptible to hallucination due to a lack of
contextual support and suffer from input length limitations that
hinder the processing of complex queries or large candidate sets.

To address the above challenges, we propose a novel FKGC frame-
work (LGC-CR) that augments both the data and model levels by
integrating enhanced meta-learning with LLM-guided refinement.
At the data level, to address Challenge 1, we design a local-
global contrastive network to enrich and align neighborhood
information: local features are aggregated via cross-attention,
while global representations are captured through a hierarchical
module composed of Residual Graph Convolutional Network (Res-
GCN) and Filter Graph Attention (FilGAT) layers, where ResGCN
ensures stable first-order aggregation through residual connections,
and FilGAT leverages structure-semantic entity dissimilarity to dy-
namically filter irrelevant high-order neighbors. These two views

are then aligned through dual contrastive learning, promoting con-
sistency between local and global perspectives. To further enhance
relational discrimination, we additionally introduce a fusion simi-
larity network that constructs a learnable non-linear metric space.
At the model level, to address Challenge 2, we introduce an
LLM refinement, which retrieves relevant structural and seman-
tic contexts to construct prompts, and incorporates a knowledge
selector that identifies high-quality facts using a dual criterion of
diversity and centrality, enabling efficient fine-tuning of LLMs to
optimize the preliminary results of meta-learning.

In summary, our contributions are as follows:

• We propose a novel FKGC framework, named LGC-CR, which
combines an enhanced meta-learning model with LLM knowl-
edge, effectively addressing challenges in high-order neighbor-
hood noise, multi-view information misalignment, and mitigat-
ing both spurious relational patterns and hallucinations.

• To effectively utilize high-order neighbors and align multi-view
information, we propose a local-global contrastive network. Rel-
evant local neighborhood information is aggregated via cross-
attention, while stable and denoised global information is cap-
tured by a ResGCN-FilGAT hierarchical graph network. To en-
hance the consistency between these two views, dual contrastive
learning is introduced. Moreover, a fusion similarity network is
designed to construct a learnable non-linear metric space.

• To reduce spurious pattern interference in meta-learning and
hallucinations in LLMs, we propose an LLM-guided refinement
method, which retrieves structural and semantic contexts rele-
vant to the query and introduces a knowledge selector to filter
high-quality facts based on diversity and centrality, fine-tuning
the LLM to optimize the initial results of the meta-learningmodel.

• Experiments on three benchmark datasets demonstrate that LGC-
CR outperforms the state-of-the-art baselines by 8.1-20.6% in
terms of Hit@1 and shows robust performance in few-shot sce-
narios. The case study shows that LGC-CR effectively distin-
guishes between the positive and negative entity pairs.

2 Related Work
Few-shot KG Completion. Current approaches for few-shot KG
completion can be classified into two categories: (1) Metric-based
methods: GMatching [39] introduces a local neighbor encoder to
enhance entity embeddings but assumes equal contribution from
all adjacent relations. FAAN [30] proposes a one-hop neighbor en-
coder with adaptive attention and a Transformer encoder to capture
dynamic interactions between entities and relations. CIAN [19] fur-
ther models the interaction between head and tail entities using an
attention mechanism. SuperRL [11] selects crucial neighbor entities
for few-shot relations from triplet and context perspectives. (2)
Optimization-based methods: MetaR [3] designs a fast gradient de-
scent update to transfer relational meta-information from support
triples to queries. GANA [27] introduces a gated attention-based
neighbor aggregator to filter noise in 1-hop neighbors.

Despite existing efforts, two issues remain: (1) they fail to lever-
age rich yet noisy high-order neighborhood information, and ig-
nore the alignment of multi-view neighborhoods; (2) meta-learning
methods over-rely on embeddings, making models susceptible to
spurious relational patterns learned from support sets.
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Contrastive Learning on Graph. The core of contrastive learn-
ing is to create diverse input views to enhance the model’s gener-
alization and robustness. Existing methods either create multiple
views using features like node attributes and relation types [24, 33],
or generate views by perturbing the data [34, 38]. However, these
methods are not designed for knowledge graphs (KGs) and cannot
be directly applied to few-shot knowledge graph completion.

LLM-Enhanced KG Completion. Recently, large language
models (LLMs) have attracted widespread attention and been used
for knowledge graph completion. RPLLM [14] fine-tunes Llama2-
7B using node names from the knowledge graph. GenKGC [16]
prompts LLMs to transform triples into context-rich segments.
However direct use of LLMs for completion struggles with un-
derstanding knowledge graph structure and semantics, resulting
in poor performance and hallucinations. On the other hand, LLMs
face input length limitations, preventing them from handling large
candidate entities. KIC-GPT [36] combines LLMs with traditional
KGC methods, leveraging both KG and LLM knowledge. However,
accessing closed-source LLMs like ChatGPT is costly, and it is not
designed for few-shot KG completion.

3 Design of LGC-CR Framework
3.1 Notations and Definitions
First we give a summary of primary notations in Table 1.
Knowledge Graph (KG) is represented as a set of triples G =

{(ℎ, 𝑟, 𝑡) ∈ E×R×E}, where E and R are entity set and relation set,
𝑟 ∈ R, while ℎ, 𝑡 ∈ E denote the head and tail entity respectively.
Few-shot knowledge graph completion (FKGC) is a specialized
task proposed for the relations with only a few triples, which are
called few-shot relations. Each few-shot relation 𝑟 corresponds to
one knowledge graph completion task 𝑇𝑟 . Given a task relation 𝑟
and its support set 𝑆𝑟 = {(ℎ𝑖 , 𝑟 , 𝑡𝑖 )}𝐾𝑖=1, the objective is to predict
the missing tail entities for the query triples, where the few-shot
size 𝐾 is typically very small. Upon sufficient training on Rtrain,
the trained model can be leveraged for the meta-validation and
meta-testing phases using Rvalid and Rtest, respectively.

3.2 Framework Overview
As shown in Figure 2, the overall framework of LGC-CR is composed
of three components: local-global contrastive network, fusion-based
similarity network, and LLM-guided refinement. Local-global con-
trastive network adopts a cross-attention mechanism to capture
relevant local neighborhood information and employs a ResGCN-
FilGAT hierarchical network to extract stable and denoised global
features. These two enhanced views are then aligned through
dual contrastive learning. Building on the enriched and aligned
entity representations, fusion-based similarity network enhances
the model’s ability to compare queries with relation prototypes
by integrating three complementary similarity metrics. To further
distinguish positive samples from negatives, a hard negative rea-
soning loss is introduced and jointly optimized with the contrastive
loss. Finally, LLM-guided refinement retrieves relevant contexts and
employs a knowledge selector to identify diverse and central facts,
which are then used to efficiently fine-tune the LLM and refine the
meta-learning results.

Table 1: Notations used in this paper.

Symbol Definition
G knowledge graph
𝑇𝑟 few-shot task corresponding to relation 𝑟
𝑆𝑟 ,𝑄𝑟 support and query set corresponding to relation 𝑟
𝐾 the number of shots for FKGC
𝑁 the semantic-aware neighbor set
local neighbor 1-hop neighbors directly connected to the entity
global neighbor multi-hop neighbors (1-hop and high-order)
h𝑡 , t𝑡 the task-aware representations
h𝑠 , t𝑠 local entity representations
𝐷𝑖 𝑗 structure-semantic entity dissimilarity
h𝑔, t𝑔 global entity representations
𝐸𝑞 adaptive relational prototype
𝐶𝑁 (𝑝𝑞 ,𝐸𝑞 ) learnable compare network metric
K number of relation clusters in diversity sampling

3.3 Local-Global Contrastive Network
The module consists of three parts: (1) Cross-Attention Local En-
hancement, (2) ResGCN-FilGAT Global Enhancement, and (3) Dual-
View Contrastive Learning.

3.3.1 Cross-Attention Local Enhancement. To obtain more com-
plete neighbor information while maintaining semantic relevance,
we propose a Knowledge-Enhanced Neighbor Sampling (KNS),
which ranks the neighbor set based on textual description. This
approach overcomes the incompleteness issues of ID-based sam-
pling [17] and the noise problems of random sampling methods [32].
Specifically, before training, we collect all first-hop neighbors of
each entity to construct a complete neighbor set 𝑁 ′. Next, we con-
catenate the description information of each neighbor relation with
the corresponding entity’s description, and encode them using a
pre-trained BERT [4] model. By computing their similarity to the
center entity’s embedding, we rank the neighbors and select the
most relevant ones to form a semantic-aware neighbor set 𝑁 (e.g.,
𝑁ℎ = {(𝑟ℎ𝑖 , 𝑒ℎ𝑖 )} ). This step is performed only once before training.
After constructing the neighbor set, we use a cross-attention mech-
anism [19] to aggregate local neighbors, where the cross-attention
mechanism includes task-aware attention and entity-pair-aware
attention. The task-aware attention sub-module processes an entity
pair (ℎ, 𝑡) regarding to the task relation. It takes the local neighbors
of each entity as input and outputs the corresponding task-aware
entity representation as follows:

h̄𝑡 =𝑊 𝑠
𝑡

(
softmax(𝑄𝑡𝐾𝑇𝑡 )𝑉𝑡

)
, (1)

where

𝑄𝑡 =𝑊
𝑄
𝑡 (𝑊𝑡 (h ⊕ t) + b𝑡 ) , 𝐾𝑡 =𝑊 𝐾

𝑡 rℎ𝑖 , 𝑉𝑡 =𝑊𝑉
𝑡 nℎ𝑖 , (2)

nℎ𝑖 = ReLU
(
[rℎ𝑖 ⊕ eℎ𝑖 ]𝑊 𝑁 + 𝑏𝑛

)
. (3)

Here, h, t, rℎ𝑖 , eℎ𝑖 ∈ R𝑑 are the embedding vectors for ℎ, 𝑡 , 𝑟ℎ𝑖 ,
𝑒ℎ𝑖 , respectively. The operation ⊕ denotes concatenation.𝑊 𝑁 ∈
R2𝑑×𝑑 , 𝑏𝑛 ∈ R𝑑 are learnable parameters for all neighbors.𝑊𝑄

𝑡 ,𝑊
𝐾
𝑡 ,

𝑊𝑉
𝑡 ,𝑊

𝑠
𝑡 ∈ R𝑑×𝑑 ,𝑊𝑡 ∈ R2𝑑×𝑑 , 𝑏𝑡 ∈ R𝑑 are all trainable parameters.
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Figure 2: Overview of our framework LGC-CR.

To emphasize the entity itself, we perform a residual-like com-
putation to get the task-aware representation of the entity:

h𝑡 = ReLU
(
h𝑊ent + h̄𝑡𝑊nbr

)
, (4)

where𝑊ent,𝑊nbr ∈ R𝑑×𝑑 are two trainable weight matrices. Simi-
larly, we apply the same method to the tail entity 𝑡 and its neighbors
𝑁𝑡 , resulting in the task-specific representation t𝑡 .

The entity-pair-aware attention sub-module determines the se-
mantic relevance between the head and tail entities by allowing
each entity to focus on the neighbors of its paired entity. It is im-
plemented in the same way as the task-aware module, where the
task-aware representations h𝑡 and t𝑡 are input to obtain the final
local entity representations h𝑠 and t𝑠 .

3.3.2 ResGCN-FilGAT Global Enhancement. To capture rich global
neighborhood information while avoiding noise from higher-order
neighbors, we propose a ResGCN-FilGAT hierarchical graph neural
network. ResGCN aggregates low-order neighbors, while FilGAT
selectively identifies and incorporates important high-order neigh-
bors. This dual-component approach enables our model to capture
more stable and comprehensive neighborhood information while
effectively filtering out noise.

Specifically, we design a ResGCN to aggregate the one-hop neigh-
borhood information. First, we aggregate local neighbors using a
GCN. To enhance training stability and mitigate gradient vanishing
in deep GCNs, we introduce a residual block that directly links the
original input to the output. Given the embedding matrix𝑋 ∈ R𝑛×𝑑

and the adjacency matrix 𝐴 ∈ R𝑛×𝑛 of all entities, where 𝑋 comes
from pretraining embedding provided by TransE [2], 𝑛 represents
the number of entities and 𝑑 is the embedding dimension. Then we

input 𝑋 and 𝐴 into the ResGCN as follows:

𝐻 (1) = ReLU
(
𝐷̃− 1

2 𝐴̃𝐷̃− 1
2𝑋𝑊 (0)

)
+𝑊 𝑟𝑋, (5)

where 𝐻 (1) represents the output obtained from the ResGCN layer,
𝐴̃ is the adjacency matrix with self-loops. The matrix 𝐷̃ represents
degree matrix of 𝐴̃,𝑊 (0) ∈ R𝑑×𝑑 denotes the weight matrix that
can be learned, while𝑊 𝑟 denotes residual projection weight.

To extract higher-order semantic information and suppress inter-
ference from noisy neighbors, we introduce FilGAT in the second
layer. Unlike the traditional Graph Attention Network (GAT) that
performs weighted aggregation of all neighbor node features, the
core of FilGAT is “not all neighbors are worth considering”. The
method incorporates an adaptive neighbor filtering mechanism
which, in contrast to rigid top-k strategies, dynamically learns how
many neighbors each entity should ignore, allowing the network
to fuse only valuable higher-order neighborhood information.

The basic idea of FilGAT is shown in Figure 3. Specifically, we
first calculate the initial attention scores between entities.

𝑜𝑖 𝑗 =
exp(LeakyReLU(𝑎⊤ [𝑊 𝑙ℎ𝑙𝑖 ⊕𝑊 𝑙ℎ𝑙𝑗 ]))∑

𝑘∈𝑁𝑖
exp(LeakyReLU(𝑎⊤ [𝑊 𝑙ℎ𝑙

𝑖
⊕𝑊 𝑙ℎ𝑙

𝑘
]))
, (6)

where ℎ𝑙𝑖 , ℎ
𝑙
𝑗 ∈ 𝐻 (1) represent the entity embeddings obtained from

the first layer, 𝑎 ∈ R2𝑑 is a learnable vector of attention parameters,
𝑊 𝑙 ∈ R𝑑×𝑑 is a weighted matrix for feature mapping. To dynami-
cally adjust attention range, we introduce entity-entity dissimilarity
for determining which neighbors to filter. We enhance the origi-
nal structural embeddings with semantic information from entity
textual descriptions, then use these combined representations to
calculate dissimilarity. The formula is as follows:

𝐷𝑖 𝑗 =


[ℎ𝑖 ⊕ 𝑑𝑖 ] − [ℎ 𝑗 ⊕ 𝑑 𝑗 ]



2 , (7)
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where ℎ𝑖 , ℎ 𝑗 are features of entities in a GNN layer, 𝑑𝑖 , 𝑑 𝑗 are the
corresponding textual embeddings obtained from the BERT model,
and ∥ · ∥2 denotes the Euclidean distance.

Based on the dissimilarity, we propose a neighbor filtering mod-
ule to refine the attention in Eq.6, yielding the final attention score:

𝛼𝑖 𝑗 =
𝑜𝑖 𝑗 · sigmoid(−𝛽𝐷𝑖 𝑗 )∑

𝑘∈𝑁𝑖
𝑜𝑖𝑘 · sigmoid(−𝛽𝐷𝑖𝑘 )

, (8)

where 𝛽 ∈ (0, 1] is used to control the importance of 𝐷𝑖 𝑗 .
The final attention score decreases as 𝐷𝑖 𝑗 increases. Unrelated

neighbors are further weakened and nearly excluded, allowing
more attention to be focused on neighbors with higher relevance
to the central entity. Based on the final attention scores, FilGAT
aggregates the features of entities and their neighbors to generate
the output, as shown in the following formula:

𝐻
(2)
𝑖

=
∑︁
𝑗∈𝑁 (𝑖 )

𝛼𝑖 𝑗𝑊
𝑙𝐻

(1)
𝑗
, (9)

where 𝑁 (𝑖) denotes entity 𝑖 and its neighbors, and we can get the
head-tail entity’s global representation h𝑔, t𝑔 ∈ 𝐻 (2) , which capture
stable and denoised global neighborhood information.

3.3.3 Dual-View Contrastive Learning. Although local and global
entity enhancement effectively capture neighborhood information,
representations obtained through different views and methods are
often inconsistent, which may introduce noise, especially in few-
shot scenarios. To address this issue, we introduce a dual-view
contrastive learning module to align the representations enhanced
by cross-attention and hierarchical graph neural networks. Specif-
ically, for each query 𝑞 ∈ 𝑄𝑟 , we enhance the query entity using
both cross-attention mechanism and ResGCN-FilGAT hierarchical
graph neural networks, obtaining local-level neighbor represen-
tations h𝑠/t𝑠 and global-level neighbor representations h𝑔/t𝑔 . We
then compute the semantic representation of the entity pair by a
position-wise feedforward neural network:

𝑝
𝑞

𝑙𝑜𝑐𝑎𝑙
= ReLU( [h𝑠 ⊕ t𝑠 ]𝑊𝑝1 + 𝑏𝑝1)𝑊𝑝2 + 𝑝 (ℎ, 𝑡),

𝑝
𝑞

𝑔𝑙𝑜𝑏𝑎𝑙
= ReLU(

[
h𝑔 ⊕ t𝑔

]
𝑊𝑝3 + 𝑏𝑝2)𝑊𝑝4 + 𝑝 (ℎ, 𝑡),

(10)

where𝑊𝑝1,𝑊𝑝2,𝑊𝑝3,𝑊𝑝4 ∈ R2𝑑×2𝑑 and 𝑏𝑝1, 𝑏𝑝2 ∈ R2𝑑 are trainable
matrices, and 𝑝 (ℎ, 𝑡) is the concatenation of ℎ and 𝑡 . It allows the
two query embeddings to be projected into a shared semantic space
for contrastive training. Similarly, we generate dual entity pair
embeddings 𝑝𝑞

−

𝑙𝑜𝑐𝑎𝑙
and 𝑝𝑞

−

𝑔𝑙𝑜𝑏𝑎𝑙
for each negative query 𝑞− .

If taking the query representation generated by the local encoder
as the anchor, the global encoder can be viewed as an augmented en-
coding process, and vice versa. The local and global representations
of the same query form positive pairs (𝑝𝑞

𝑙𝑜𝑐𝑎𝑙
, 𝑝
𝑞

𝑔𝑙𝑜𝑏𝑎𝑙
), while the lo-

cal and global representations of positive and negative queries form
negative pairs (𝑝𝑞

𝑙𝑜𝑐𝑎𝑙
, 𝑝
𝑞−

𝑔𝑙𝑜𝑏𝑎𝑙
). Based on this, we define two con-

trastive losses to maximize the consistency between dual entity-pair
embeddings for positive queries and enforce divergence between
those of positive and negative queries, as follows:

𝐿𝑙𝑜𝑐𝑎𝑙 =
1

|𝑄𝑟 |
∑︁
𝑞∈𝑄𝑟

− log
exp(sim(𝑝𝑞

𝑙𝑜𝑐𝑎𝑙
, 𝑝
𝑞

𝑔𝑙𝑜𝑏𝑎𝑙
)/𝜏)∑

𝑖 exp(sim(𝑝𝑞
𝑙𝑜𝑐𝑎𝑙

, 𝑝
𝑞−
𝑖

𝑔𝑙𝑜𝑏𝑎𝑙
)/𝜏)

,

𝐿𝑔𝑙𝑜𝑏𝑎𝑙 =
1

|𝑄𝑟 |
∑︁
𝑞∈𝑄𝑟

− log
exp(sim(𝑝𝑞

𝑔𝑙𝑜𝑏𝑎𝑙
, 𝑝
𝑞

𝑙𝑜𝑐𝑎𝑙
)/𝜏)∑

𝑖 exp(sim(𝑝𝑞
𝑔𝑙𝑜𝑏𝑎𝑙

, 𝑝
𝑞−
𝑖

𝑙𝑜𝑐𝑎𝑙
)/𝜏)

,

(11)

where 𝜏 is the temperature parameter, and the final dual contrastive
loss integrates these two complementary loss terms as:

𝐿𝑐 = 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 + 𝐿𝑙𝑜𝑐𝑎𝑙 . (12)

3.4 Fusion-based Similarity Network
3.4.1 Prototype Learner and Similarity Network. This module com-
prises an adaptive relational prototype learner and a similarity
network combining three complementary metric methods. First, to
mitigate noise from the support set during prototype generation,
we incorporate query information. Specifically, given a query rep-
resentation 𝑝𝑞 , where 𝑞 ∈ 𝑄𝑟 , the corresponding prototype 𝐸𝑞 for
relation 𝑟 can be computed as:

𝐸𝑞 =

𝐾∑︁
𝑖=1

𝜂𝑖𝑝𝑠𝑖 , 𝜂𝑖 =
𝑒𝑝𝑞⊙𝑝𝑠𝑖∑𝐾
𝑘=1 𝑒

𝑝𝑞⊙𝑝𝑠𝑘
, (13)

where 𝑝𝑞 denotes embedding of entity pairs from 𝑝
𝑞

𝑔𝑙𝑜𝑏𝑎𝑙
or 𝑝𝑞

𝐿𝑜𝑐𝑎𝑙
,

𝜂𝑖 denotes attention score between the 𝑝𝑞 and 𝑝𝑠𝑖 . 𝑝𝑠𝑖 represents
the 𝑖-th support entity pairs, and ⊙ represents dot product.

Existing methods mostly rely on a single similarity measure,
only discriminative in a single feature space, which easily causes
similarity bias in few-shot scenarios. To address this, we propose a
fusion similarity network that combines dot product, Mahalanobis
distance, and compare network. The Mahalanobis distance captures
dependencies between features via covariance matrix, while the
compare network learns deep, nonlinear metrics among features.

𝑑𝑝 (𝑝𝑞 ,𝐸𝑞 ) = 𝑝𝑞 ⊙ 𝐸𝑞, (14)

𝑀𝑎 (𝑝𝑞 ,𝐸𝑞 ) =
√︃
(𝑝𝑞 − 𝐸𝑞)⊤Σ−1 (𝑝𝑞 − 𝐸𝑞), (15)

𝐶𝑁 (𝑝𝑞 ,𝐸𝑞 ) = ReLU(𝑆𝑒𝑞Π (𝑆𝑒𝑞𝐼 ( [𝑝𝑞 ⊕ 𝐸𝑞])𝑊1 + 𝑏1)𝑊2 + 𝑏2), (16)

where 𝑆𝑒𝑞(𝑧) = dropout(LeakyReLU(LayerNorm(𝑧𝑊𝑧 +𝑏𝑧))),𝑊1,
𝑊2, 𝑊𝑧 , 𝑏1, 𝑏2, 𝑏𝑧 are learnable parameters, Σ−1 denotes the in-
verse of the covariance matrix. LayerNorm (·) is a normalization
method and dropout(·) is used to alleviate overfitting. Then, the
three similarity scores are fused as follows:

𝑠 (𝑝𝑞, 𝐸𝑞) = 𝑑𝑝 (𝑝𝑞 ,𝐸𝑞 ) + 𝜔 ·𝐶𝑁 (𝑝𝑞 ,𝐸𝑞 ) −𝑀𝑎 (𝑝𝑞 ,𝐸𝑞 ) , (17)
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where 𝜔 is a hyperparameter. Since 𝑝𝑞 comes from both local and
global views, we can obtain the similarity scores 𝑠𝐺 (𝑝𝑞, 𝐸𝑞) and
𝑠𝐿 (𝑝𝑞, 𝐸𝑞) from the global and local perspectives, respectively. Based
on this, the final similarity score is computed as:

𝑠𝑓 (𝑝𝑞, 𝐸𝑞) = 𝜃 · 𝑠𝐺 (𝑝𝑞, 𝐸𝑞) + 𝑠𝐿 (𝑝𝑞, 𝐸𝑞). (18)

3.4.2 Hard Negative Loss and Optimization. We design a hard neg-
ative reasoning loss using the above similarity score. Specifically,
for a given relation 𝑟 , we sample a batch of triples as the posi-
tive query set 𝑄+

𝑟 = {(ℎ𝑞, 𝑡+𝑞 ) | (ℎ𝑞, 𝑟 , 𝑡+𝑞 ) ∈ 𝐺𝑟 } and generate
the negative query set by randomly polluting the tail entities:
𝑄−
𝑟 = {(ℎ𝑞, 𝑡−𝑞 ) | (ℎ𝑞, 𝑟 , 𝑡−𝑞 ) ∉ 𝐺𝑟 }, where 𝐺𝑟 denotes background

KG. Different from previous works [19, 20], we do not treat all neg-
ative samples equally. Instead, we adopt an attention mechanism to
focus more on hard negative samples that are difficult to distinguish
during training, as shown below:

𝛿𝑟𝑖 =
exp(𝑠𝑓 (𝑟𝑞𝑖 , 𝑆𝑟 ))∑𝐽

𝑗=1 exp(𝑠𝑓 (𝑟
𝑞

𝑗
, 𝑆𝑟 ))

,

𝐿ℎ =
∑︁
𝑟

∑︁
𝑟𝑞+∈𝑄+

𝑟

[
𝛾 − 𝑠𝑓 (𝑟𝑞+, 𝑆𝑟 ) +

𝐽∑︁
𝑗=1

𝛿𝑟𝑖 𝑠𝑓 (𝑟
𝑞

𝑖
, 𝑆𝑟 )

]
+

,

(19)

where 𝐽 denotes the number of negative samples, 𝛾 is a margin
hyperparameter, and [𝑥]+ =max(0, 𝑥) is the standard hinge loss.

The model is jointly optimized by the Hard Negative Loss and
the Dual Contrastive Loss. The overall objective is defined as:

𝐿 = 𝐿ℎ + 𝜆𝐿𝑐 , (20)
where 𝜆 controls the influence of the contrastive loss.

3.5 LLM-guided Contextual Refinement
To address challenge 2 mentioned above, we propose an LLM-
guided Contextual Refinement module. This module retrieves struc-
tural and semantic information, and selects high-quality knowledge
based on diversity and centrality to fine-tune a dedicated LLM for
FKGC, refining the meta-learning-derived initial predictions. It con-
sists of three components: (1) Instruction Retrieval, (2) Knowledge
Selector, and (3) Re-ranker via Instruction Fine-tuning.

3.5.1 Instruction Retrieval. For a given query (ℎ, 𝑟, ?), we retrieve
relevant information to construct the prompt. This retrieval pro-
cess consists of five key components: Query Rephrasing, Few-
shot Examples, Context Distillation, Auto Path Selection, and
Candidates Generation. We illustrate this process using (Stephen
Curry, playfor, ?) as an illustrative example.

Query Rephrasing transforms the structured query (Curry, play-
for, ?) into multiple natural language questions using an LLM, such
as "Which team does Curry play for?" and "What team is Curry
currently on?", and feeds them collectively as prompts to help the
model better capture query intent and improve generalization.

Few-shot Examples retrieves several training triples that share
the same relation (playfor) as the current query to serve as demon-
stration prompts, aiding the LLM in learning relational patterns.
For instance: (Jason Tatum, playfor, Celtics), (LeBron James, playfor,
Lakers), and (Wembanyama, playfor, Spurs).

Context Distillation provides semantic contexts by extracting tex-
tual descriptions of the head entity (Stephen Curry) and the relation
(playfor) from sources such as Wikidata. If such descriptions are
unavailable, they are generated via an LLM.

Auto Path Selection dynamically retrieves one-hop and multi-
hop neighbors of the head entity (e.g., Stephen Curry) based on
its connectivity, using fewer hops for dense entities and more for
sparse ones. An attention mechanism ranks neighbor relevance,
and only the most informative paths are retained to provide struc-
tural context, such as (Curry, team_location, San Francisco, venue_of,
Chase Center) and (Draymond Green, teammates, Curry).

Candidates Generation refers to the top-𝑀 candidate entities (e.g.,
[Lakers, Celtics,Warriors, ...]) produced by the FKGC model. This
list reflects the initial judgment of the meta-learning and is retained
in the prompt to guide the LLM toward more refined predictions.

3.5.2 Knowledge Selector. To improve the efficiency and effective-
ness of instruction fine-tuning, we propose a Knowledge Selector
for constructing high-quality instruction data. Specifically, we in-
troduce two complementary sampling strategies to evaluate the
importance of relations in the training set: Diversity-aware Sam-
pling and Centrality-aware Sampling.

Diversity-aware Sampling To ensure that the instruction data
covers diverse relational patterns in the knowledge graph, we first
apply the K-Means algorithm to cluster all relation embeddings.
Specifically, given a set of relation embeddings {𝑟1, 𝑟2, . . . , 𝑟𝑛} from
the training set, we partition them intoK clusters, each represented
by a centroid 𝜇𝑘 . Within each cluster 𝐶𝑘 , the relation closest to the
centroid(𝑟 ∗

𝑘
) is selected as the representative.

𝑟 ∗
𝑘
= arg min

𝑟 ∈𝐶𝑘
∥𝑟 − 𝜇𝑘 ∥2 . (21)

This method automatically selects the most representative rela-
tions, ensuring that the instruction data covers diverse semantic
patterns while avoiding redundancy.

Centrality-aware Sampling To enhance the model’s ability to
learn core knowledge, we propose a relation-level PageRank-based
centrality metric. Unlike traditional entity-centric centrality mea-
sures, we construct a graph where nodes represent relations and
edges are formed based on shared entities. The knowledge centrality
score is then computed for each relation as follows:

𝐾𝐶 (𝑟 ) = 1 − 𝑑
𝑑

+ 𝑑 ·
∑︁

𝑟 ′∈𝑁 (𝑟 )

𝐾𝐶 (𝑟 ′)
|𝑁 (𝑟 ′) | , (22)

where 𝐾𝐶 (𝑟 ) denotes the knowledge centrality score of relation
𝑟 , 𝑑 is the damping factor (typically set to 0.85), 𝑁 (𝑟 ) represents
the set of neighboring relations of 𝑟 , and |𝑁 (𝑟 ′) | is the number of
neighbors of relation 𝑟 ′. We select the top 𝑇% of relations with the
highest centrality scores to ensure that the training data covers the
most critical and influential knowledge in the knowledge graph.

Finally, we take the union of the results from diversity-aware
and centrality-aware sampling, ensuring that the selected relations
both cover diverse semantic patterns and reflect core knowledge in
the graph. This strategy not only reduces the size of the instruction
data, but also guides the model to focus on essential knowledge.

3.5.3 Re-ranker via Instruction Fine-tuning. After retrieving the
relevant instruction contexts and distilling high-quality knowledge,
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we fine-tune a large language model (LLM) specifically for few-
shot knowledge graph completion (FKGC). Given the carefully
constructed prompts 𝑃 (𝑞), which incorporate both structural and
semantic context, along with the top-𝑀 candidates generated by the
meta-learning model, LLM is fine-tuned to refine these candidates
and ultimately rank the top-10 most plausible tail entities in order.

4 Experiments
4.1 Experimental Setup
4.1.1 Datasets. We evaluate our LGC-CR on three benchmark
datasets: NELL-One, Wiki-One [39], and FB15K-One [40]. Follow-
ing established protocols [20, 42], we select relations with 50–500
triples for few-shot tasks, while treating the remaining relations
and their triples as the background knowledge graph. Based on this
setup, we employ Deepseek-R1[8] to generate textual descriptions
for each entity and relation by querying it for relevant information,
and evaluate their quality by comparing them with correspond-
ing Wikipedia entries for semantic consistency. Detailed dataset
statistics are provided in Table 2.

Table 2: Statistics of datasets.

Dataset Ent Triple Rel Task
Train/Valid/Test

Avg. Desc.
Length (E/R)

NELL 68,545 181,109 358 67(51/5/11) 30.5/10.2
Wiki 4,838,244 5,859,240 822 183(133/16/34) 24.7/8.4
FB15K 14,478 309,621 237 45(32/8/5) 19.6/7.1

4.1.2 Baselines. We compare our model with two types of FKGC
baselines. (1) Metric-based: GMatching [39], FAAN [30], CIAN
[19], TransAM [23], APINet [20], SuperRL [11], MVSE [26], HNII
[21], and NFAA [7]. (2) Optimization-based: MetaR [3], FSRL
[42], and GANA [27]. These methods focus on local structures and
relational semantics for better embeddings, without incorporating
knowledge from LLM. Traditional KGE models are omitted due to
significantly worse performance than the few-shot baselines [27].

4.1.3 Implementation Details. For fair comparison, we use TransE-
pretrained entity and relation embeddings. For each dataset, we set
the number of neighbors to 100, and fix the filtering parameter 𝛽 at
1.0. We set the neighbor hop at 2, the compare network weight 𝜔 at
100, the global score weight 𝜃 at 0.6, the number of negative samples
at 8, the temperature 𝜏 at 0.1, and the margin 𝛾 at 5.0. The Adam
optimizer [15] is used with learning rate of 1e−4 for NELL-One,
2e−4 for Wiki-One, and 8e−5 for FB15K-One. The hyperparameter
𝜆 is set to 0.3 for 3-shot and 0.06 for 5-shot. During refinement, we
consider 𝑀 = 20 candidate answers. Diversity sampling employs
3/10/5 clusters for NELL/Wiki/FB15K, respectively, while centrality
sampling retains the top 30% of relations. For instruction tuning,
we adopt Deepseek-R1-Distill-Qwen-14B as the LLM and apply
LoRA [12] for finetuning (𝑟 = 8, 𝑎𝑙𝑝ℎ𝑎 = 16). All experiments are
conducted using PyTorch on an NVIDIA RTX A800 GPU.

4.2 Main Results
4.2.1 Performance Comparison. Table 3 compares LGC-CR and its
two variants, LGC-FKGC (using only the enhanced meta-learning
model) and LGC+Deepseek-R1 (employing the LLM for refinement
without fine-tuning), against the baselines on three benchmark
datasets under 3-shot and 5-shot settings. From the experimental
results, we have the following observations:

• LGC-CR outperforms the state-of-the-artmethods on three bench-
mark datasets. Specifically, compared with the best-performing
baseline, LGC-CR achieves remarkable improvements of 8.1%,
21.7 %, and 20.6% in Hit@1 on Nell-One, Wiki-One, and FB15K-
One datasets, respectively, indicating that LGC-CR is more likely
to rank correct triplets at the top position.

• LGC-FKGC is also competitive, particularly under 3-shot setting.
This is because when few triplets are available, our method can
obtain stable and denoised global neighborhood information to
make up for the performance degradation caused by the lack
of support set. Compared to NFAA, LGC-FKGC performs bet-
ter, which benefits from our dual contrastive learning, enabling
better integration of neighborhood information from different
views. Moreover, our method outperforms metric-based baseline
methods (e.g., CIAN), thanks to the fusion similarity network,
which is able to construct a more discriminative nonlinear metric
space. Additionally, the performance improvement on NELL is
greater than on Wiki, likely due to differences in graph density.
In dense graphs like NELL, FilGAT can filter out many dissimilar
neighbors and focus on a few relevant ones for effective feature
aggregation. In contrast, Wiki has sparser neighborhoods, where
fewer irrelevant neighbors need to be identified.

• With the addition of LLM refinement, our method significantly
outperforms embedding-based meta-learning methods. This im-
provement is attributed to the strong semantic understanding of
the LLM,whichmitigates the impact of spurious relation patterns.
However, without fine-tuning, this enhancement is less evident,
especially on NELL dataset, which contains many specialized
entities (e.g., apple001). The LLM struggles to comprehend such
domain-specific knowledge in the KG, underscoring the impor-
tance of the knowledge selector and fine-tuning, which explicitly
injects filtered knowledge to further boost model performance.

4.2.2 Ablation Study. We perform ablation studies on the NELL-
One and Wiki-One datasets to assess the contribution of each
component in LGC-CR. Results presented in Table 4 demonstrate
that each module plays a vital role in the overall performance.
Specifically, (1)When removing the knowledge selector (w/o.KS),
we observe noticeable performance degradation (NELL-One: Hit@1
↓1.9%; Wiki-One: Hit@1 ↓2.9%). This confirms that selecting high-
diversity, high-centrality facts helps reduce noise from marginal
relations. Further removing the fine-tuning module (w/o. KS&sft)
results in more significant performance drops (NELL-One: Hit@1
↓5.3%;Wiki-One: Hit@1 ↓7.8%), indicating that knowledge injection
through fine-tuning enhances LLM performance and contributes to
better refinement results. Additionally, eliminating the refinement
module (w/o. CR) leads to substantial performance declines (Wiki-
One: Hit@1 ↓23.3%), demonstrating its ability to improve meta-
learned outputs via strong semantic understanding. (2) Removing
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Table 3: Comparison of state-of-the-art methods on Nell-One, Wiki-One, and FB15K-One.

Model Nell-One Wiki-One FB15K-One

MRR Hit@5 Hit@1 MRR Hit@5 Hit@1 MRR Hit@5 Hit@1

3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 5-shot 5-shot 5-shot

GMatching(2018)[39] - 0.176 - 0.233 - 0.113 - 0.263 - 0.337 - 0.197 0.189 0.274 0.101
MetaR (2019)[3] 0.245 0.261 0.360 0.350 0.144 0.168 0.317 0.323 0.379 0.385 0.261 0.270 0.203 0.291 0.107
FSRL(2020)[42] 0.219 0.195 0.296 0.279 0.139 0.108 0.102 0.113 0.131 0.135 0.050 0.056 0.223 0.364 0.102
FAAN(2020)[30] 0.247 0.279 0.309 0.364 0.183 0.200 0.298 0.341 0.368 0.395 0.228 0.281 0.259 0.424 0.178
GANA(2021)[27] 0.322 0.344 0.432* 0.437 0.225 0.246 0.331 0.351 0.389 0.407 0.283 0.299 0.209 0.334 0.107
CIAN(2022)[19] 0.344* 0.373* 0.417 0.453 0.266* 0.294* 0.358 0.383 0.438 0.453 0.284 0.318 0.248 0.426 0.144
TransAM(2023)[23] 0.235 0.263 0.361 0.311 0.175 0.205 0.315 0.330 0.345 0.405 0.273 0.258 - - -
APINet(2023)[20] 0.305 0.318 0.405 0.412 0.208 0.225 0.342 0.347 0.419 0.428 0.283 0.297 - - -
SuperRL(2024)[11] 0.312 0.330 0.404 0.441 0.223 0.234 0.359* 0.388* 0.446* 0.458* 0.297* 0.320* - - -
MVSE(2024)[26] 0.302 0.332 0.405 0.465* 0.178 0.211 0.349 0.351 0.382 0.422 0.295 0.296 0.285* 0.458* 0.195*
HNII(2024)[21] - 0.365 - 0.453 - 0.283 - 0.352 - 0.457 - 0.315 - - -
NFAA(2025)[7] 0.303 0.332 0.368 0.409 0.233 0.263 0.332 0.341 0.384 0.416 0.285 0.282 - - -

LGC-FKGC 0.382 0.390 0.467 0.488 0.304 0.311 0.362 0.377 0.458 0.473 0.301 0.304 0.310 0.469 0.208
LGC+DeepSeek-R1 - 0.392 - 0.473 - 0.322 - 0.486 - 0.525 - 0.459 0.396 0.518 0.300
LGC-CR 0.428 0.440 0.515 0.523 0.342 0.375 0.544 0.567 0.573 0.606 0.511 0.537 0.474 0.566 0.401

Best results are bolded, runner-up results are underlined, and * indicates the SOTA baseline metrics.
Missing metrics are due to unavailability in the original papers.

(a) Impact of few-shot size (b) Impact of hyperparameter 𝜆

(c) Impact of neighbor hop (d) Impact of Contrastive Strategies

Figure 4: Parameter Sensitivity Analysis of LGC-FKGC.

the dual contrastive learning (w/o. CR&DCL) causes notable perfor-
mance declines, verifying its effectiveness in aligning local-global
views and enhancing model robustness. Replacing our fusion simi-
larity network with a single dot-product metric (w/o. CR&FS) yields
inferior results, suggesting that relying solely on a single metric can
introduce similarity bias, whereas integrating Mahalanobis distance
and compare network helps construct a more discriminative metric
space. Furthermore, removing the local-global contrast module (w/o.
CR&LGC) leads to additional performance degradation, indicating

(a) Impact of number of candidates (b) Impact of Knowledge Selector ratio

Figure 5: Impact of Candidate Entities and Knowledge Selector
Ratio on LGC-CR Performance and Time Cost.

that rich high-order neighbor information and noise filtering are
crucial to model effectiveness. (3) LLM-only (shuffle) refers to using
the LLM to process randomly ordered candidate entities, which
causes a notable drop in performance compared to the full model.
This indicates that the initial meta-learning stage reduces the rank-
ing difficulty. LLM-only (generate) denotes prompting the LLM to
directly generate an answer and ground it to candidate entities via
similarity, but yields the worst performance, suggesting that the
alignment process introduces inevitable errors. The poor perfor-
mance of LLM-only variants further validates the effectiveness of
our integrated approach.

4.3 Further Analysis
4.3.1 Impact of few-shot size. We conducted experiments on
LGC-CRwhile varying the few-shot size𝐾 on Nell-One. As depicted
in Figure 4(a), (1) When 𝐾 is small, the performance of LGC-CR
is significantly better than other methods. This is because, with
a limited number of triplets available, our method can effectively
leverage stable and denoised global neighborhood information to
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Table 4: Ablation study results on Nell-One and Wiki-One.

Models Nell-One Wiki-One
MRR Hit@1 MRR Hit@1

Full Model 0.440 0.375 0.567 0.537
w/o. KS 0.420 0.356 0.538 0.508
w/o. KS&sft 0.392 0.322 0.486 0.459
w/o. CR 0.390 0.311 0.377 0.304
w/o. CR&FS 0.384 0.302 0.364 0.295
w/o. CR&DCL 0.376 0.286 0.359 0.288
w/o. CR&LGC 0.353 0.269 0.342 0.280
LLM-only(shuffle) 0.267 0.282 0.336 0.269
LLM-only(generate) 0.110 0.135 0.110 0.226

compensate for the performance drop caused by the lack of support
set. (2) The performance of LGC-CR fluctuates slightly across differ-
ent values of 𝐾 , maintaining relatively stable results. This stability
is attributed to the use of residual connections and dual contrastive
learning strategies, which help stabilize the training process and
enhance the model’s generalization ability, enabling it to handle
various few-shot scenarios.

4.3.2 Impact of hyperparameter 𝜆. We explored the impact of
the dual contrastive learning loss weight 𝜆 on performance under
different settings (3-shot and 5-shot). The values of 𝜆 were selected
from the set {0, 0.03, 0.06, 0.09, 0.3, 0.6}. As shown in Figure 4(b), in
the 3-shot setting, the model’s performance (MRR) reached its peak
when 𝜆 = 0.3. In the 5-shot setting, the performance was maximized
when 𝜆 = 0.06. This indicates that the impact of the contrastive
learning loss on model performance is more significant when the
support size is smaller. With fewer support set triplets, the model is
more prone to overfitting, and aligning multi-view neighborhood
features can enhance the model’s generalization ability.

4.3.3 Impact of neighbor hop. We analyzed the model’s per-
formance on NELL-One and FB15K-One datasets across different
neighbor hop counts (1-hop, 2-hop, 3-hop). As shown in Figure
4(c), performance improves on both datasets when increasing from
1-hop to 2-hop, indicating that appropriately increasing neighbor
hop count helps capture richer neighborhood information. How-
ever, excessive hop counts (e.g., 3-hop) lead to performance decline:
MRR dropped from 0.390 to 0.381 on NELL-One and from 0.310
to 0.299 on FB15K-One, suggesting that broader neighbor ranges
may introduce additional noise. Notably, 3-hop performance on
NELL-One remains relatively high, while it’s significantly lower
on FB15K-One, possibly due to FB15K-One’s smaller size making it
more susceptible to training noise.

4.3.4 Impact of Contrastive Learning Strategies. We compare
three contrastive learning strategies on the NELL-one dataset: Dual
Contrastive Learning, using only the local view as the anchor (w/o.
global loss), and using only the global view as the anchor (w/o. local
loss). The results shown in Figure 4(d) denote that Dual Contrastive
Learning outperforms the single contrastive learning strategies
across all metrics, especially in Hit@1. This is because single con-
trastive learning is prone to overfitting the noise in the current view.
In contrast, Dual Contrastive Learning simultaneously optimizes
both views, meaning that even if one view is incomplete or noisy,

the other can still provide valuable complementary information,
enhancing the model’s robustness.

4.3.5 Impact of number of candidates. We investigated the
impact of the number of candidate entities𝑀 generated by meta-
learning on model performance and inference time. The experi-
mental results are shown in Figure 5(a). First, as𝑀 increases, the
training time grows linearly, which is intuitive because an increase
in𝑀 directly leads to longer prompt content. Next, focusing on the
performance of LGC-CR, it was found that setting𝑀 to 20 yields
the best performance on the NELL-One dataset. However, further
increasing𝑀 leads to a decrease in performance. This result indi-
cates that blindly increasing the number of candidate entities does
not necessarily improve performance.

4.3.6 Impact of the Knowledge Selector ratio. We investigated
the impact of the knowledge selector ratio 𝑇 on the performance
and training time of LGC-CR. The experimental results, shown in
Figure 5(b), lead to the following observations: (1) As 𝑇 increases,
the training time grows linearly, since a larger 𝑇 means more train-
ing data, resulting in higher computational cost. (2) When 𝑇 = 30,
the model performs best, indicating that the knowledge selector
effectively identifies the most central training data, enhancing the
model’s generalization. (3) When 𝑇 = 40, performance drops. Al-
though the data volume increases, more noisy or irrelevant relations
are introduced, weakening the fine-tuning effect. (4) When 𝑇 = 10,
Hit@1 is lower, as insufficient training data prevents the model
from learning essential knowledge. Thus, too little data hinders
model adaptation, while too much data may introduce noise.

4.4 Case Study
4.4.1 Visualization. We conducted a case study by selecting two
specific relations for visualization, as shown in Figure 6. The figure
demonstrates that our model effectively distinguishes between the
representations of positive and negative entity pairs. Compared
to baseline methods such as CIAN [19] and MVSE [26], the sepa-
ration is noticeably clearer. For instance, under the relation ’ani-
malssuchasinvertebrate’, the positive and negative pairs are clearly
separable. This observation indicates that our model excels at pro-
ducing highly distinctive and well-separated representations for
different types of entity pairs.

4.4.2 Relation Pattern Bias Analysis. To analyze the improvement
of our method on spurious pattern bias across different relations,
we conduct a case study comparing the top-5 candidate entities
produced by the meta-learning model and after LLM-guided re-
finement, as shown in Table 5. For the teamcoach relation, the
LGC-FKGC model suffers from high-frequency patterns (e.g., ‘NBA
team→ famous coach’, ‘same-conference teams→ common star
coaches’), ranking hub entities such as Phil Jackson and Gregg
Popovich ahead of the true but long-tail head coach (Jason Kidd).
Notably, LLM refinement also considers temporal relevance, plac-
ing Jason Kidd before Rick Carlisle. For the location of discovery
relation, the model exhibits a ‘discoverer–site’ bias: if an artifact’s
discoverer has found other items in a location (e.g., Siselen), the
model tends to assume the artifact was also discovered there, thus
over-ranking that location.
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Figure 6: Embedding visualization of entity pairs.

Table 5: Case study of Top-5 candidate rankings for two rela-
tion types. Correct entities are in bold.

Query Task LGC-FKGC LGC-CR

(dallas_mavericks,
teamcoach, ?)
True: coach:jason_kidd

phil_jackson
gregg_popovich
scott_skiles
rick_carlisle
jason_kidd

jason_kidd
rick_carlisle
gregg_popovich
scott_skiles
marc_iavaroni

(possible_agrippina_major,
location_of_discovery, ?)
True: béziers

siselen
müllheim
béziers
labastide_marnhac
isarrnig

béziers
siselen
müllheim
labastide_marnhac
river_ness

Our LLM-Guided Refinement integrates textual evidence and fac-
tual knowledge to promote the correct answer to the top, effectively
mitigating the pattern bias of meta-learning methods.

5 Conclusion
In this paper, we introduced LGC-CR, a novel few-shot knowl-
edge graph completion framework that integrates an enhanced
meta-learning model with LLM knowledge. LGC-CR includes a
local-global contrastive network that aggregates local information
through cross-attention and captures global neighborhoods via a
hierarchical module, effectively enriching high-order neighborhood
information while flexibly filtering noise. To effectively fuse these

complementary multi-view neighborhoods, we introduced a dual
contrastive learning module to ensure consistency. Additionally,
we designed a fusion similarity network to construct a more dis-
criminative non-linear metric space. Finally, we incorporated LLM
refinement, which retrieves relevant contexts and selects diverse,
knowledge-centric facts to fine-tune LLMs for optimizing meta-
learning results. Extensive experiments demonstrate that LGC-CR
achieves significant improvements and exhibits more robust perfor-
mance than state-of-the-art baselines, with Hit@1 improvements
of 8.1%, 21.7%, and 20.6% on NELL, Wiki, and FB15K, respectively.
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