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What is fact checking?

Fact checking answers if a fact belongs to the missing part of KG.
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Triple < "#, %, "& >
- "# and "& are two nodes;
- # and & are node labels;
- % is a relationship;

e.g.,
<Cicero, influencedBy, Plato>

- "# = “Cicero”, "& = “Plato”
- #, & = “philosopher”
- % = “influencedBy”

Knowledge Graph (KG): G=(V,	E,	L) Fact: a triple predicate



Fact Checking in Graphs

Graph structure can be evidence for fact checking.

“If a philosopher X gave one or 
more speeches, which cited a 
book of another philosopher Y
with the same topic, then the 
philosopher X is likely to be 
lnfluencedBy Y.”
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A fact can be supported by its 
surrounded substructures!



Fact Checking via Graph Patterns
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Graph structure can be evidence for fact checking.
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We say % covers a fact if
&' and &( matches )' and )( with *.

Pattern: regularity in KG



Rule Model: Graph Fact Checking Rules (GFC)

GFC ! ∶ # $, & → (($, &)
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Rule Semantics:
- GFC / states that if pattern 0(,, -) covers a 
fact < 2$, (, 2& >, then it is true.

Rule matching:
- Subgraph isomorphism

overkill: redundant, too strict, too many
- Approximate matching

(S. Ma, VLDB 2011)

A GFC rule contains two patterns connected by two anchored nodes.



! "#

Rule Statistics

§ Given: G = V, E, L
§ GFC * ∶ , -, . → 0(-, .)

§ True	facts	Γ#:
• sampled	from	the	edges	F in	I.

§ False	facts	ΓL:
• sampled	from	node	pairs	(M-, M.) that	have	no	0 between	them.
• following	partial	closed	world	assumption	(PCA)

Statistical measures are defined in terms of graph and a set of training facts.
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Support and Confidence

GFC: ! ∶ # $, & → (($, &)

§ supp ! = |0 12 ∩4(12)|
|4(12)|

Ratio of facts can be covered
out of r(x, y) triples.

§ conf ! = |0 12 ∩4(12)|
|0 12 9|

Ratio of facts can be covered
out of (x, y) pairs, under PCA.

# #

supp = 2/3

# #

(:$, :&) (:$, :&)(:$, :&)

conf = 1/2

((:$, :&) ((:$, :&) ((:$, :&)

Support and confidence are for pattern mining.



Significance
GFC: ! ∶ # $, & → (($, &)

G-Test score

sig !, ., / = 2|Γ4|(. ln ./ + 1 − . ln 1 − .
1 − / )

: and ; are the supports of <(=, >) for positive and negative facts, respectively.

A “rounded up” score max{sig !, ., C , sig(!, C, /)} is used in practice. 
where C is a small positive to prevent infinities.

In our work, we also normalize it between 0 and 1 by a sigmoid function.

Significance is the ability to distinguish true and false facts.



Diversity

! is a set of GFCs.

div ! =
1
|Γ)|

*
+∈-.

*
/∈01(!)
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89(:) is the GFCs in : that cover a true fact ;.
E.g. !< = =<, =?, =@ , !? = {=B, =C, =D}

F(GH, GI)< F(GH, GI)? F(GH, GI)@

=< ✓ ✓
=? ✓ ✓
=@ ✓ ✓

F(GH, GI)< F(GH, GI)? F(GH, GI)@

=B ✓ ✓
=C ✓ ✓
=D ✓ ✓

Diversity is to measure the redundancy of a set of GFCs

div !J = 2 div !K = 1.6>



Top-! GFC Discovery Problem

Problem formulation:
Given graph ", support threshold # and confidence threshold $, and 
a set of true facts Γ& and a set of false facts Γ', and integer (, 
identify a size-( set of GFCs ),
such that:
(a) For each GFC * in ), supp * ≥ #, conf * ≥ $.
(b) cov ) is maximized.

To cope with diversity, the total significance sig ) = ∑9 ∈) sig(*).

Coverage function:         cov ) = sig ) + div())

More significance, less redundancy.



Properties of cov(%)

§ cov % is a set function.
marginal gain: mg % = cov % ∪ {,} − cov %

§ cov % is monotone.
Adding elements to % does not decrease cov(%).

§ cov % is submodular.
If %/ ⊆ %1 and , ∉ %1, then mg %1 ≤ mg(%/).

Submodularity is a good property for set optimization problem.



Discovery Algorithms

§ OPT = max cov $
- Cannot afford to enumerate every size-% set of GFCs.
- cov $ is a monotone submodular function.
- A greedy algorithm can have (1 − )

*) approximation of OPT.

§ GFC_batch: 
1. Mine all the patterns satisfying support and confidence.
2. , = ∅
3. While , < %, do
4. Select the pattern 0 with the largest marginal gain.

GFC_batch: mining in batch and selecting greedily



Discovery Algorithms

§ GFC_batch is infeasible and slow.
§ Still, it requires mine all patterns first.
§ Can we do better?

GFC_stream: mining and selecting on-the-fly!

§ GFC_stream:
§ Interleave pattern generation and rule selection.
§ Find the top-! GFCs on-the-fly.
§ One pass of pattern mining.
§ (#$ − &) approximation of OPT



Discovery Algorithms

Ø PGen: pattern generation
§ Generates patterns in a stream way.
§ Pass the patterns for selection
§ Can be in any order, e.g., Apriori, DFS, or random.

PGen

PSelØ PSel: pattern selection
§ Selects and constructs GFCs on-the-fly.
§ Based on a “sieve” strategy, !

" − $ OPT

pattern
stream

decision

1. Estimate the range of OPT by max{cov(,)}
2. Each one is a size-. sieve with an estimation / for OPT.
3. While the sieves are not full
4. if mg(,, 3) ≥ ( 5" − cov(3))/(. – |3|), add , to sieve 3.
5. Signal PGen to stop and output the sieve with largest cov.

GFC_stream: mining and selecting on-the-fly!

Fast compute!



GFC-based fact checking

ØGFactR: Using GFCs as rules:
§ Invokes GFC_stream to find top-! GFCs.
§ “Hit and miss”

§ True if a fact is covered by one GFC.
§ False If no GFC can cover the fact.

§ A typical rule model to compare with: AMIE+

ØGFact: Using GFCs in supervised link prediction:
§ A feature vector of size !.
§ Each entry encodes the presence of one GFC.
§ Build a classifier, by default, Logistic Regression.
§ A typical rule models to compare with: PRA



Experiment settings

Dataset category |V| |E| # node labels # edge labels # < ", $, % >
Yago Knowledge base 2.1 M 4.0 M 2273 33 15.5 K

DBpedia Knowledge base 2.2 M 7.4 M 73 584 8240

Wikidata Knowledge base 10.8 M 41.4 M 18383 693 209 K

MAG Academic network 0.6 M 1.71 M 8665 6 11742

Offshore Social network 1.0 M 3.3 M 356 274 633

Tasks Rule Mining Fact Checking
Our methods GFC_batch, GFC_stream GFact, GFactR

Baselines AMIE+, PRA AMIE+, PRA, KGMiner
Evaluation Metrics running time vs. ' , Γ) prediction rate, precision, recall, F1



Experiment: efficiency
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Overview
§ GFC_stream takes 25.7 seconds to discover 200 GFCs over Wikidata

with 41.4 million edges and 6000 training facts.
§ On average, GFC_stream is 3.2 times faster than AMIE+ over DBpedia.



Experiment: effectiveness
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Compared with AMIE+, PRA and KGMiner, respectively, on average:
§ GFact achieves additional 30%, 20%, and 5% gains of precision over DBpedia.
§ GFact achieves additional 20%, 15%, and 16% gains of F1-score over Wikidata.



Case study: are two anonymous companies same? (Offshore)

!"
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!#

shareholder

isActiveIn

(officer)GFC AMIE+

• If two anonymous companies are 
registered in the same place, then 
they are same.

• Low accuracy.

registerIn(         ,        )⋀ registerIn(         ,        )

isSameAs(         ,         )⟹

beneficiary

(address) (place)

(A. Company)

registeredIn

(jurisdiction)

isIn

isIn

• If an officer is both a shareholder of company &'
and a beneficiary of company &(, and &' has an 
address and is registered through a jurisdiction in a 
place, and &( is active in the same place, then they 
are likely to be the same anonymous company.



Conclusions and future work

Ø Our future work: scalable GFC-based methods
§ Parallel mining, Distributed learning

Sponsored by: 

Ø Graph Fact Checking Rules (GFCs)

Ø A stream-based rule discovery algorithm
§ One pass, !

" − $ OPT

Ø Evaluation of GFCs-based techniques
§ Rule models, fact checking (2 methods), efficiency, and case studies.

Ø Top-% GFCs discovery problem
Maximize  a submodular cov function.



Discovering Graph Patterns for Fact Checking
in Knowledge Graphs

Thank you!

Related work: Gstream (IEEE BigData 2017)
Event Pattern Discovery by Keywords in Graph Streams
Mohammad Hossein Namaki, Peng Lin, Yinghui Wu
https://ieeexplore.ieee.org/abstract/document/8258019/



More effectiveness results
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More thorough experiments to compare various methods:
http://eecs.wsu.edu/~plin1/pdfs/2017-Preprint-Factchecking-experiments.pdf


