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Abstract. Given a knowledge graph and a fact (a triple statement),
fact checking is to decide whether the fact belongs to the missing part
of the graph. This paper proposes a new fact checking method based
on supervised graph pattern mining. Our method discovers discriminant
graph patterns associated with the training facts. These patterns can
then be used to construct classifiers based on either rules or latent fea-
tures. (1) We propose a class of graph fact checking rules (GFCs). A GFC
incorporates graph patterns that best distinguish true and false facts of
generalized fact statements. We provide quality measures to character-
ize useful patterns that are both discriminant and diversified. (2) We
show that it is feasible to discover GFCs in large graphs, by developing
a supervised pattern discovery algorithm. To find useful GFCs as early
as possible, it generates graph patterns relevant to training facts, and
dynamically selects patterns from a pattern stream with small update
cost per pattern. We further construct two GFC-based models, which
make use of ordered GFCs as predictive rules and latent features from
the pattern matches of GFCs, respectively. Using real-world knowledge
bases, we experimentally verify the efficiency and the effectiveness of
GFC-based techniques for fact checking.

1 Introduction

Knowledge graphs have been adopted to support emerging applications, e.g.,
web search [6], recommendation [26], and decision making [14]. A knowledge
graph consists of a set of facts. Each fact is a triple statement <vx, r, vy>, where
vx and vy denote a subject entity and an object entity, respectively, and r refers
to a predicate (a relation) between vx and vy. One of the cornerstone tasks for
knowledge base management is fact checking. Given a knowledge graph G, and a
fact t, it is to decide whether t belongs to the missing part of G. Fact checking can
be used to (1) directly refine incomplete knowledge bases [2,6,19,25], (2) provide
cleaned evidence for error detection in dirty knowledge bases [3,13,21,36], and
(3) improve the quality of knowledge search.
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Fig. 1. Facts and associated graph patterns

Real-world facts in knowledge graphs are often associated with nontrivial
regularities that involve both topological and semantic constraints beyond paths.
Given observed facts, such regularities can be usually captured by graph patterns
and their matches associated with the facts. Consider the following example.

Example 1. The graph G1 in Fig. 1 illustrates a fraction of DBpedia [19] that
depicts the facts about philosophers. A user is interested in finding “whether
a philosopher vx is influenced by another philosopher vy”. Given a relation
influencedBy between philosophers (influencedBy(philosopher, philosopher))
and an instance <Cicero, influencedBy,Plato> verified to be true in G1, a
graph pattern P1 can be extracted to define influencedBy by stating that “if a
philosopher vx (e.g., “Cicero”) gave one or more speeches (e.g., “Against Piso”)
that cited a book of vy (e.g., “Dialogues of Plato”) with the same topic, then “vx

is likely to be influenced by vy”.
Graph patterns with “weaker” constraints may not explain facts well. Con-

sider a graph pattern P ′
1 obtained by removing the edge belongsTo(speech, book)

from P1. Although “Cicero” and “Plato” also matches P ′
1, a false fact

<Cicero, influencedBy, John Stuart Mill> also matches P ′
1 (not shown). There-

fore, discriminant patterns that well distinguish observed true and false facts
should be discovered.

As another example, consider graph G2, a fraction of a real-world offshore
activity network [16] in Fig. 1. To find whether an active intermediary (AI) a is
likely to serve a company in transition (CT) c, a pattern P2 that explains such
an action may identify G2 by stating “a is likely an intermediary of c if it served
for a dissolved company d which has the same shareholder o and one or more
providers with c.”

These graph patterns can be easily interpreted as rules, and the matches
of the graph patterns readily provide instance-level evidence to “explain” the
facts. These matches also indicate more accurate predictive models for various
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facts. We ask the following question: How to characterize useful graph patterns
and efficiently discover useful graph patterns to support fact checking in large
knowledge graphs?

Contribution. We propose models and pattern discovery algorithms that
explicitly incorporate discriminant graph patterns to support fact checking in
knowledge graphs.

(1) We introduce graph fact checking rules (GFCs) (Sect. 2). GFCs incorporate
discriminant graph patterns as the antecedent and generalized triple patterns
as the consequent, and characterize fact checking with graph pattern match-
ing. We adopt computationally efficient pattern models to ensure tractable
fact checking via pattern matching.

We also develop statistical measures (e.g., support, confidence, signifi-
cance, and diversity) to characterize useful GFCs (Sect. 3). Based on these
measures, we formulate the top-k GFC discovery problem to mine useful
GFCs for fact checking.

(2) We develop a feasible supervised pattern discovery algorithm to compute
GFCs over a set of training facts (Sect. 4). In contrast to conventional pat-
tern mining, the algorithm solves a submodular optimization problem with
provable optimality guarantees, by a single scan of a stream of graph pat-
terns, and incurs a small cost for each pattern.

(3) To evaluate the applications of GFCs, we apply GFCs to enhance rule-based
and learning-based models, by developing two such classifiers. The first
model directly uses GFCs as rules. The second model extracts instance-level
features from the pattern matches induced by GFCs to learn a classifier
(Sect. 4.2).

(4) Using real-world knowledge bases, we experimentally verify the efficiency
of GFC-based techniques (Sect. 5). We found that the discovery of GFCs
is feasible over large graphs. GFC-based fact checking also achieves high
accuracy and outperforms its counterparts using Horn clause rules and path-
based learning. We also show that the models are highly interpretable by
providing case studies.

Related Work. We categorize the related work as follows.

Fact Checking. Fact checking has been studied for both unstructured data [10,28]
and structured (relational) data [15,37]. These work rely on text analysis and
crowd sourcing. Automatic fact checking in knowledge graphs is not addressed
in these work. Beyond relational data, several methods have been studied to
predict triples in graphs.

(1) Rule-based models extract association rules to predict facts. AMIE (or its
improved version AMIE+) discovers rules with conjunctive Horn clauses [11,
12] for knowledge base enhancement. Beyond Horn-rules, GPARs [8] discover
association rules in the form of Q ⇒ p, with a subgraph pattern Q and a
single edge p. It recommends users via co-occurred frequent subgraphs.
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(2) Supervised link prediction has been applied to train predictive models with
latent features extracted from entities [6,18]. Recent work make use of path
features [4,5,13,29,34]. The paths involving targeted entities are sampled
from 1-hop neighbors [5] or via random walks [13], or constrained to be
shortest paths [4]. Discriminant paths with the same ontology are grouped
to generate positive and negative examples in [29].

Rule-based models are easy to interpret but usually cover only a subset of
useful patterns [24]. It is also expensive to discover useful rules (e.g., via subgraph
isomorphism) [8]. On the other hand, latent feature models are more difficult to
be interpreted [12,24] compared with rule models. Our work aims to balance the
interpretability and model construction cost. (a) In contrast to AMIE [12], we use
more expressive rules enhanced with graph patterns to express both constant and
topological context of facts. Unlike [8], we use approximate pattern matching for
GFCs instead of subgraph isomorphism, since the latter may produce redundant
examples and is computationally hard in general. (b) GFCs can induce useful and
discriminant features from patterns and subgraphs, beyond path features [5,13,
34]. (c) GFCs can be used as a standalone rule-based method. They also provide
context-dependent features to support supervised link prediction to learn highly
interpretable models. These are not addressed in [8,12].

Graph Pattern Mining. Frequent pattern mining defined by subgraph isomor-
phism has been studied for a single graph. GRAMI [7] discovers frequent sub-
graph patterns without edge labels. Parallel algorithms are also developed for
association rules with subgraph patterns [8]. In contrast, (1) we adopt approx-
imate graph pattern matching for feasible fact checking, rather than subgraph
isomorphism as in [7,8]. (2) we develop a more feasible stream mining algorithm
with optimality guarantees on rule quality, which incurs a small cost to pro-
cess each pattern. (3) Supervised graph pattern mining over observed ground
truth is not discussed in [7,8]. In contrast, we develop algorithms that discover
discriminant patterns that best distinguish observed true and false facts.

Graph Dependency. Data dependencies have been extended to capture errors in
graph data. Functional dependencies for graphs (GFDs) [9] enforce topological
and value constraints by incorporating graph patterns with variables and sub-
graph isomorphism. These hard constraints (e.g., subgraph isomorphism) are
useful for detecting data inconsistencies but are often violated by incomplete
knowledge graphs for fact checking tasks. We focus on “soft rules” to infer new
facts towards data completion rather than identifying errors with hard con-
straints [27].

2 Fact Checking with Graph Patterns

We review the notions of knowledge graphs and fact checking. We then introduce
a class of rules that incorporate graph patterns for fact checking.

Knowledge Graphs. A knowledge graph [6] is a directed graph G = (V,E,L),
which consists of a finite set of nodes V , a set of edges E ⊆ V × V , and for
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each node v ∈ V (resp. edge e ∈ E), L(v) (resp. L(e)) is a label from a finite
alphabet, which encodes the content of v (resp. e) such as properties, relations
or names.

For the example in Fig. 1, a subject vx = “Cicero” carries a type x=
“philosopher” and an object vy = “Plato” carries a type y = “philosopher”. A
fact <vx, r, vy> = <Cicero, influencedBy,Plato> is an edge e in G encoded
with label “influencedBy” between the subject vx and the object vy.

Fact Checking in Knowledge Graphs. Given a knowledge graph G and a
new fact <vx, r, vy>, where vx and vy are in G, the task of fact checking is
to learn and use a model M to decide whether the relation r exists between
vx and vy [24]. This task can be represented by a binary query in the form of
<vx, r?, vy>, where the model M outputs “true” or “false” for the query. A
variant of fact checking is a class of queries in the form of <vx, r, vy?>, where
the model M outputs a set of possible values of type y for specified vx and r
that are likely to be true in G.

Graph Pattern. A graph pattern P (x, y) = (VP , EP , LP ) (or simply P ) is a
directed graph that contains a set of pattern nodes VP and pattern edges EP ,
respectively. Each pattern node up ∈ VP (resp. edge ep ∈ EP ) has a label LP (up)
(resp. LP (ep)). Moreover, it contains two designated anchored nodes ux and uy in
VP of type x and y, respectively. Specifically, when it contains a single pattern
edge with label r between ux and uy, P is called a triple pattern, denoted as
r(x, y).

Pattern Matches. Given a graph pattern P (x, y) and a knowledge graph G, a
node match v ∈ V of a pattern node up has the same label of node up, and an
edge match e = (v, v′) of a pattern edge ep = (u, u′) is induced by the matches
v and v′ of nodes u and u′, respectively. We say a pattern P covers a fact
<vx, r, vy> in G if vx and vy match its anchored nodes ux and uy, respectively.
Specifically, a pattern P can cover a fact by enforcing two established semantics.

(1) Subgraph patterns [7] define pattern matching in terms of subgraph isomor-
phism, induced by bijective functions.

(2) Approximate patterns [22,32] specify a matching relation R with constraints
below to preserve both parent and child relations of P . For each pair
(u, v) ∈ R,
– for every edge e = (u, u′) ∈ EP , there exists an edge match e′ = (v, v′) ∈

E; and
– for every edge e = (u′′, u)∈EP , there exists an edge match e′ =(v′′, v)∈E.

To ensure feasible fact checking in large knowledge graphs, we adopt approx-
imate patterns for our model (see “Semantics”).

We now introduce our rule model that incorporates graph patterns.

Rule Model. A graph fact checking rule (denoted as GFC) is in the form of
ϕ : P (x, y) → r(x, y), where (1) P (x, y) and r(x, y) are two graph patterns
carrying the same pair of anchored nodes (ux, uy), and (2) r(x, y) is a triple
pattern and is not in P (x, y).
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Semantics. A GFC ϕ : P (x, y) → r(x, y) states that “a fact <vx, r, vy> holds
between vx and vy in G, if (vx, vy) is covered by P”. To ensure computation-
ally efficient fact checking, we prefer approximate patterns instead of subgraph
patterns. Subgraph isomorphism may be an overkill in capturing meaningful
patterns [22,31,32] and is expensive (NP-hard). Moreover, it generates (expo-
nentially) many isomorphic subgraphs, and thus introduces redundant features
for model learning. In contrast, it is in O(|VP |(|VP | + |V |)(|EP | + |E|)) time to
find whether a fact is covered by an approximate pattern [22]. The tractability
carries over to the validation of GFCs (Sect. 4).

Example 2. Consider the patterns and graphs in Fig. 1. To verify the influence
between philosophers, a GFC ϕ1 : P1(x, y) → influencedBy(x, y). Pattern P1

has two anchored nodes x and y, both with type philosopher, and covers the
pair (Cicero, Plato) in G1. Another GFC ϕ2 : P2(x, y) →intermediaryOf(x, y)
verifies the service between a pair of matched entities (a, c). Note that with sub-
graph isomorphism, P1 induces two subgraphs of G1 that only differ by entities
with label speech. It is not practical for users to inspect such highly overlapped
subgraphs.

Remarks. We compare GFCs with two models below. (1) Horn rules are adopted
by AMIE+ [11], in the form of

∧
Bi → r(x, y), where each Bi is an atom (fact)

carrying variables. It mines only closed (each variable appears at least twice)
and connected (atoms transitively share variables/entities to all others) rules.
We allow general approximate graph patterns in GFCs to mitigate missing data
and capture richer context features for supervised models (Sect. 4). (2) The asso-
ciation rules with graph patterns [8] have similar syntax with GFCs but adopt
strict subgraph isomorphism for social recommendation. In contrast, we define
GFCs with semantics and quality measures (Sect. 3) specified for observed true
and false facts to support fact checking.

3 Supervised GFC Discovery

To characterize useful GFCs, we introduce a set of measures that extend their
counterparts from established rule-based models [12] and discriminant pat-
terns [38], specialized for a set of training facts. We then formalize supervised
GFC discovery problem.

Statistical Measures. Our statistical measures are defined for a given graph
G = (V,E,L) and a set of training facts Γ . The training facts Γ consists of
two classes: true facts Γ+, which contains validated facts that hold in G; and
false facts Γ−, which contains triples not in G, respectively. Following common
practice in knowledge base completion [24], we adopt the silver standard to
construct Γ from G, where (1) Γ+ ⊆ E, and (2) Γ− are created following
partial closed world assumption (see “Confidence”).

We use the following notations. Given a GFC ϕ : P (x, y) → r(x, y), graph G,
facts Γ+ and Γ−, (1) P (Γ+) (resp. P (Γ−)) refers to the set of training facts in
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Γ+ (resp. Γ−) that are covered by P (x, y) in Γ+ (resp. Γ−). P (Γ ) is defined
as P (Γ+) ∪ P (Γ−), i.e., all the facts in Γ covered by P . (2) r(Γ+), r(Γ−), and
r(Γ ) are defined similarly.

Support and Confidence. The support of a GFC ϕ : P (x, y) → r(x, y), denoted
by supp(ϕ,G, Γ ) (or simply supp(ϕ)), is defined as

supp(ϕ) =
|P (Γ+) ∩ r(Γ+)|

|r(Γ+)|
Intuitively, the support is the fraction of the true facts as instances of r(x, y)

that satisfy the constraints of a graph pattern P (x, y). It extends head coverage,
a practical version for rule support [12] to address triple patterns r(x, y) with
not many matches due to the incompleteness of knowledge bases.

Given two patterns P1(x, y) and P2(x, y), we say P1(x, y) refines P2(x, y)
(denoted by P1(x, y) � P2(x, y), if P1 is a subgraph of P2 and they pertain to
the same pair of anchored nodes (ux, uy). We show that GFC support preserves
anti-monotonicity in terms of pattern refinement.

Lemma 1. For graph G, given any two GFCs ϕ1 : P1(x, y) → r(x, y) and ϕ2 :
P2(x, y) → r(x, y), if P1(x, y) � P2(x, y), supp(ϕ2) ≤ supp(ϕ1).

Proof Sketch: It suffices to show that any pair (vx2 , vy2) covered by P2 in G is
also covered by P1(x, y). Assume there exists a pair (vx2 , vy2) covered by P2 but
not by P1, and assume w.l.o.g. vx2 does not match the anchored node ux in P1.
Then there exists either (a) an edge (ux, u) (or (u, ux)) in P1 such that no edge
(vx2 , v) (or (v, vx2)) is a match, or (b) a node u as an ancestor or descendant
of ux in P1, such that no ancestor or descendant of vx2 in G is a match. As
P2 refines P1, both (a) and (b) lead to that vx2 is not covered by P2, which
contradicts the definition of approximate patterns. �

Following rule discovery in incomplete knowledge base [12], we adopt partial
closed world assumption (PCA) to characterize the confidence of GFCs. Given
triple pattern r(x, y) and a true instance <vx, r, vy> ∈ r(Γ+), PCA assumes that
a missing instance <vx, r, v′

y> of r(x, y) is a false fact if vy and v′
y have different

values. We define a normalizer set P (Γ+)N , which contains the entity pairs
(vx, vy) that are in P (Γ+), and each pair has at least a false counterpart under
PCA. The confidence of ϕ in G, denoted as conf(ϕ,G, Γ ) (or simply conf(ϕ)), is
defined as

conf(ϕ) =
|P (Γ+) ∩ r(Γ+)|

|P (Γ+)N |
The confidence measures the probability that a GFC holds over the entity

pairs that satisfy P (x, y), normalized by the facts that are assumed to be false
under PCA. We follow PCA to construct false facts in our experimental study.

Significance. A third measure quantifies how significant a GFC is in “distinguish-
ing” the true and false facts. To this end, we extend the G-test score [38]. The
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G-test tests the null hypothesis of whether the number of true facts “covered” by
P (x, y) fits its distribution in the false facts. If not, P (x, y) is considered to be
statistically significant. Specifically, the score (denoted as sig(ϕ, p, n), or simply
sig(ϕ)) is defined as

sig(ϕ) = 2|Γ+|(p ln
p

n
+ (1 − p) ln

1 − p

1 − n
)

where p (resp. n) is the frequency of the facts covered by pattern P of ϕ in
Γ+ (resp. Γ−), i.e., p = |P (Γ+)|

|Γ+| (resp. n = |P (Γ−)|
|Γ−| ). As sig(·) is not anti-

monotonic, a common practice is to use a “rounded up” score to find significant
patterns [38]. We adopt an upper bound of sig(·), denoted as ŝig(ϕ, p, n) (or ŝig(ϕ)
for simplicity), which is defined as max{sig(ϕ, p, δ), sig(ϕ, δ, n)}, where δ > 0 is a
small constant (to prevent the case that ŝig(·) = ∞). It is not hard to show that
ŝig(·) is anti-monotonic in terms of pattern refinement, following a proof similar
to Lemma 1. Besides, we normalize ŝig(ϕ) to ˆnsig(ϕ) in range [0, 1] by a sigmoid
function, i.e., ˆnsig(ϕ) = tanh(ŝig(ϕ)).

Redundancy-Aware Selection. In practice, one wants to find GFCs with both
high significance and low redundancy. Indeed, a set of GFCs can be less useful if
they “cover” the same set of true facts in Γ+. We introduce a bi-criteria function
that favors significant GFCs that cover more diversified true facts. Given a set of
GFCs S, when the set of true facts Γ+ is known, the coverage score of S, denoted
as cov(S), is defined as

cov(S) = sig(S) + div(S)

The first term, defined as sig(S) =
√∑

ϕ∈S ˆnsig(ϕ), aggregates the
total significance of GFCs in S. The second term, defined as div(S) =(∑

t∈Γ+

√∑
ϕ∈Φt(S) supp(ϕ)

) /
|Γ+|, where Φt(S) refers to the GFCs in S that

cover a true fact t ∈ Γ+, quantifies the diversity of S, following a diversity
reward function [20]. Intuitively, it rewards the diversity in that there is more
benefit in selecting a GFC that covers new facts, which are not covered by other
GFCs in S yet. Both terms are normalized to (0,

√
|S|].

The coverage score favors GFCs that cover more distinct true facts with more
discriminant patterns. Moreover, adding a new GFC ϕ to a set S improves its sig-
nificance and coverage at least as much as adding it to any superset of S (dimin-
ishing gain to S). That is, cov(·) is well defined in terms of submodularity [23],
a property widely used to justify goodness measures for set mining. Define the
marginal gain mg(ϕ,S) of a GFC ϕ to a set S (ϕ /∈ S) as cov(S ∪ {ϕ}) − cov(S).
We show the following result.

Lemma 2. The function cov(·) is a monotone submodular function for GFCs,
that is, (1) for any two sets S1 and S2, if S1 ⊆ S2, then cov(S1) ≤ cov(S2), and
(2) for any two sets S1 and S2, if S1 ⊆ S2 and for any GFC ϕ /∈ S2,mg(ϕ,S2) ≤
mg(ϕ,S1).
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It is easy to verify that cov(·) is a monotone submodular function by the def-
inition of monotone submodularity and that both sig(S) and div(S) are defined
in terms of square root functions. Due to space limit, we omit the detailed proof.

We now formulate the supervised top-k GFC discovery problem over observed
facts.

Top-k Supervised GFC Discovery. Given graph G, support threshold σ and
confidence threshold θ, and training facts Γ+ and Γ− as instances of a triple
pattern r(x, y), and integer k, the problem is to identify a set S of top-k GFCs that
pertain to r(x, y), such that (a) for each GFC ϕ ∈ S, supp(ϕ) ≥ σ, conf(ϕ) ≥ θ,
and (b) cov(S) is maximized.

4 Discovery Algorithm

4.1 Top-k GFC Mining

The supervised discovery problem for GFCs is not surprisingly intractable. A
naive “enumeration-and-verify” algorithm that generates and verifies all k-
subsets of GFC candidates that cover some examples in Γ is clearly not practical
for large G and Γ . We consider more efficient algorithms.

“Batch + Greedy”. We start with an algorithm (denoted as GFC batch) that
takes a batch pattern discovery and a greedy selection as follows. (1) Apply graph
pattern mining (e.g., Apriori [17]) to generate and verify all the graph patterns
P. The verification is specialized by an operator Verify, which invokes the pattern
matching algorithm in, e.g., [22] to compute the support and confidence for each
pattern. (2) Invoke a greedy algorithm to do k passes of P. In each iteration i, it
selects the pattern Pi, such that the corresponding GFC ϕi : Pi(x, y) → r(x, y)
maximizes the marginal gain cov(Si−1 ∪ {ϕi}) − cov(Si−1), and then it updates
Si as Si−1 ∪ {ϕi}.

GFC batch guarantees a (1 − 1
e ) approximation, following Lemma2 and the

seminal result in [23]. Nevertheless, it requires the verification of all patterns
before the construction of GFCs. The selection further requires k passes of all
the verified patterns. This can be expensive for large G and Γ .

We can do better by capitalizing on stream-based optimization [1,32]. In
contrast to “batch” style mining, we organize newly generated patterns in a
stream, and assemble new patterns to top-k GFCs with small update costs. This
requires a single scan of all patterns, without waiting for all patterns to be veri-
fied. We develop such an algorithm to discover GFCs with optimality guarantees,
as verified by the result below.

Theorem 1. Given a constant ε > 0, there exists a stream algorithm that com-
putes top-k GFCs with the following guarantees:

(1) It achieves an approximation ratio ( 12 − ε);
(2) It performs a single pass of all processed patterns P, with update cost in
O((b + |Γb|)2 + log k

ε ), where b is the largest edge number of the patterns, and
Γb is the b hop neighbors of the entities in Γ .
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Fig. 2. Algorithm GFC stream

As a proof of Theorem 1, we next introduce such a stream discovery algo-
rithm.

“Stream +Sieve”. Our supervised discovery algorithm, denoted as GFC stream
(illustrated in Fig. 2), interleaves pattern generation and GFC selection as follows.

(1) Pattern stream generation. The algorithm GFC stream invokes a proce-
dure PGen to produce a pattern stream (lines 2, 8). In contrast to GFC batch
that verifies patterns against entire graph G, it partitions facts Γ to blocks,
and iteratively spawns and verifies patterns by visiting local neighbors of the
facts in each block. This progressively finds patterns that better “purify” the
labels of only those facts they cover, and thus reduces unnecessary enumer-
ation and verification.

(2) Selection On-the-fly. GFC stream invokes a procedure PSel (line 7) to select
patterns and construct GFCs on-the-fly. To achieve the optimality guarantee,
it applies the stream-sieving strategy in stream data summarization [1]. In a
nutshell, it estimates the optimal value of a monotonic submodular function
F (·) with multiple “sieve values”, initialized by the maximum coverage score
of single patterns (Sect. 3) maxpcov = maxP∈P(cov(P )) (lines 4–5), and
eagerly constructs GFCs with high marginal benefit that refines sieve values
progressively.

The above two procedures interact with each other: each pattern verified
by PGen is sent to PSel for selection. The algorithm terminates when no new
pattern can be verified by PGen or the set S can no longer be improved by PSel
(as will be discussed). We next introduce the details of procedures PGen and PSel.

Procedure PGen. Procedure PGen improves its “batch” counterpart
in GFC batch by locally generating patterns that cover particular sets of facts,
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following a manner of decision tree construction. It maintains the following struc-
tures in each iteration i: (1) a pattern set Pi, which contains graph patterns of
size (number of pattern edges) i, and is initialized as a size-0 pattern that con-
tains anchored nodes ux and uy only; (2) a partition set Γi(P ), which records
the sets of facts P (Γ+) and P (Γ+), is initialized as {Γ+, Γ−}, for each pattern
P ∈ Pi. At iteration i, it performs the following.

(1) For each block B ∈ Γi−1, PGen generates a set of graph patterns Pi with
size i. A size-i pattern P is constructed by adding a triple pattern e(u, u′)
to its size-(i − 1) counterpart P ′ in Pi−1. Moreover, it only inserts e(u, u′)
with instances from the neighbors of the matches of P ′, bounded by P ′(Γ ).

(2) For each pattern P ∈ Pi, PGen computes its support, confidence and signifi-
cance (G-test) as in procedure Verify of algorithm GFC batch, and prunes Pi

by removing unsatisfied patterns. It refines P ′(Γ+) and P ′(Γ−) to P (Γ+)
and P (Γ−) accordingly. Note that P (Γ+) ⊆ P ′(Γ+), and P (Γ−) ⊆ P ′(Γ−).
Once a promising pattern P is verified, PGen returns P to procedure PSel
for the construction of top-k GFCs S.

Procedure PSel. To compute the set of GFCs S that maximizes cov(S) for a
given r(x, y), it suffices for procedure PSel to compute top k graph patterns that
maximize cov(S) accordingly. It solves a submodular optimization problem over
the pattern stream that specializes the sieve-streaming technique [1] to GFCs.

Sieve-Streaming [1]. Given a monotone submodular function F (·), a constant ε >
0 and element set D, sieve-streaming finds top-k elements S that maximizes F (S)
as follows. It first finds the largest value of singleton sets m = maxe∈D F ({e}),
and then uses a set of sieve values (1+ε)j (j is an integer) to discretize the range
[m, k ∗ m]. As the optimal value, denoted as F (S∗), is in [m, k ∗ m], there exists
a value (1+ ε)j that “best” approximates F (S∗). For each sieve value v, a set of
top patterns Sv is maintained, by adding patterns with a marginal gain at least
(v
2 − F (Sv))/(k − |Sv|). It is shown that selecting the sieve of best k elements

produces a set S with F (S) ≥ ( 12 − ε)F (S∗) [1].
A direct application of the above sieve-streaming for GFCs seems infeasi-

ble: one needs to find the maximum cov(ϕ) (or cov(P ) for fixed r(x, y)), which
requires to verify the entire pattern set. Capitalizing on data locality of graph
pattern matching, Lemma 2, and Lemma 1, we have good news.

Lemma 3. It is in O(|Γ1|) time to compute the maximum cov(P ).

This can be verified by observing that cov(·) also preserves anti-monotonicity
in terms of pattern refinement. That is, cov(P ′) ≤ cov(P ) if P � P ′. Thus,
maxP∈P cov(P ) is contributed by a single-edge pattern. That is, procedure PSel
only needs to cache at most |Γ1| size-1 patterns from PGen to find the global
maximum cov(P ) (lines 4–5 of GFC stream). The rest of PSel follows the sieve-
streaming strategy, as illustrated in Fig. 3. The GFCs are constructed with the
top-k graph patterns (line 8).
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Fig. 3. Procedure PSel

Optimization. To further prune unpromising patterns, procedure PGen estimates
an upperbound m̂g(P,Svj

) (line 5 of PSel) without verifying a new size-i pattern
P . If m̂g(P,Svj

) < (vj

2 − cov(Svj
))/(k − |Svj

|), P is skipped without further
verification.

To this end, PGen first traces to a GFC ϕ′ : P ′(x, y) → r(x, y), where P ′

is a verified sub-pattern of P , and P is obtained by adding a triple pattern r′

to P ′. It estimates an upper bound of the support of the GFC ϕ : P (x, y) →
r(x, y) as ˆsupp(ϕ) = supp(ϕ′) − l

|r(Γ+)| , where l is the number of the facts in
r(Γ+) that have no instance of r′ in their i hop neighbors (thus cannot be
covered by P ). Similarly, one can estimate an upper bound for p and n in the
formula of sig(·), and thus get an upper bound for ˆnsig(ϕ). For each t in Γ+,
denote term

√∑
ϕ∈Φt(S) supp(ϕ) in div(S) as Tt, it then computes m̂g(P,S) as

ˆnsig(ϕ)

2
√

sig(S)
+

(∑
t∈P (Γ+)

ˆsupp(ϕ)

2
√

Tt

)/
|Γ+|. One may prove that this is an upper bound

for m̂g(P,S), by applying the inequality
√

α + β−√
α ≤ β/(2

√
α) to each square

root term in sig(·) and div(·). We found that this effectively reduces redundant
verifications (see Sect. 5).

Performance Analysis. Denote the total patterns verified by the algorithm
GFC stream as P, it takes O(|P|(b + |Γb|)2) time to compute the pattern
matches and verify the patterns. Each time a pattern is verified, it takes
O( log k

ε ) time to update the set Sv. Thus the update time for each pattern is
in O((b + |Γ |b)2 + log k

ε ).
The approximation ratio follows the analysis of sieve stream summarization

in [1]. Specifically, (1) there exists a sieve value vj = (1 + ε)j ∈ [maxpcov, k ∗
maxpcov] that is closest to F (S∗), say, (1 − 2ε)F (S∗) ≤ vj ≤ F (S∗); and (2)
the set Svj

is a ( 12 − ε) answer for an estimation of F (S∗) with sieve value vj .
Indeed, if mg(P,Svj

) satisfies the test in PSel (line 5), then cov(Svj
) is at least

vj |S|
2k = vj

2 (when |S| = k). Following [1], there exists at least a value vj ∈ SV

that best estimates the optimal cov(·), and thus achieves approximation ratio
( 12 −ε). Thus, selecting the GFCs with patterns from the sieve set with the largest
coverage value guarantees approximation ratio (12 − ε).

The above analysis completes the proof of Theorem1.
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4.2 GFC-Based Fact Checking

The GFCs can be applied to enhance fact checking as rule models or via super-
vised link prediction. We introduce two GFC-based models.

Using GFCs as Rules. Given facts Γ , a rule-based model, denoted as GFactR,
invokes algorithm GFC stream to discover top-k GFCs S as fact checking rules.
Given a new fact e = <vx, r, vy>, it follows “hit and miss” convention [12] and
checks if there exists a GFC ϕ in S that covers e (i.e., both its consequent and
antecedent cover e). If so, GFactR accepts e, otherwise, it rejects e.

Using GFCs in Supervised Link Prediction. Useful instance-level features
can be extracted from the patterns and their matches induced by GFCs to train
classifiers. We develop a second model (denoted as GFact) that adopts the fol-
lowing specifications.

Features. For each example e = <vx, r, vy> ∈ Γ , GFact constructs a feature
vector of size k, where each entry encodes the presence of the ith GFC ϕi in the
top-k GFCs S. The class label of the example e is true (resp. false) if e ∈ Γ+

(resp. Γ−).
By default, GFact adopts Logistic Regression, which is experimentally verified

to achieve slightly better performance than others (e.g., Naive Bayes and SVM).
We find that GFact outperforms GFactR over real-world graphs (See Sect. 5).

5 Experimental Study

Using real-world knowledge bases, we empirically evaluate the efficiency of GFCs
discovery and the effectiveness of GFC-based fact checking.

Datasets. We used five real-world knowledge graphs, including (1) YAGO [33]
(version 2.5), a knowledge base that contains 2.1M entities with 2273 distinct
labels, 4.0M edges with 33 distinct labels, and 15.5K triple patterns; (2) DBpe-
dia [19] (version 3.8), a knowledge base that contains 2.2M entities with 73
distinct labels, 7.4M edges with 584 distinct labels, and 8.2K triple patterns;
(3) Wikidata [35] (RDF dumps 20160801), a knowledge base that contains 10.8M
entities with 18383 labels, 41.4M edges of 693 relations, and 209K triple pat-
terns; (4) MAG [30], a fraction of an academic graph with 0.6M entities (e.g.,
papers, authors, venues, affiliations) of 8565 labels and 1.71M edges of 6 rela-
tionships (cite, coauthorship), and (5) Offshore [16], a social network of offshore
entities and financial activities, which contains 1M entities (e.g., companies,
countries, person) with 357 labels, 3.3M relationships (e.g., establish, close)
with 274 labels, and 633 triple patterns. We use Offshore mostly for case studies.

Methods. We implemented the following methods in Java: (1) algorithm
GFC stream, compared with (a) its “Batch + Greedy” counterpart GFC batch
(Sect. 4), (b) algorithm AMIE+ [11] that discovers AMIE rules, (c) PRA [6,18],
the Path Ranking Algorithm that trains classifiers with path features from ran-
dom walks, and (d) KGMiner [29], a variant of PRA that makes use of features
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from discriminant paths; (2) fact checking models GFactR and GFact, compared
with learned models (and also denoted) by AMIE+, PRA, and KGMiner, respec-
tively. For practical comparison, we set a pattern size (the number of pattern
edges) bound b = 4 for GFC discovery.

Model Configuration. For fair comparison, we made effort to calibrate the models
and training/testing sets under consistent settings. (1) For the supervised link
prediction methods (GFact, PRA, and KGMiner), we sample 80% of the facts
in a knowledge graph as the training facts Γ , with instances of in total 107
triple patterns, and 20% edges as testing set T . Each triple pattern has 5K-50K
instances. In Γ (resp. T ), 20% are true examples Γ+ (resp. T +), and 80% are
false examples Γ− (resp. T −). We generate Γ− and T − under PCA (Sect. 3) for
all the models. For all methods, we use Logistic Regression to train the classifiers,
same as the default settings of PRA and KGMiner. (2) For rule-based methods
GFactR and AMIE+, we discover rules that cover the same set of Γ+. We set the
size of AMIE+ rule body to be 3, comparable to the number of pattern edges in
our work.

Overview of Results. We find the following. (1) It is feasible to discover GFCs
in large graphs (Exp-1). For example, it takes 211 s for GFC stream to discover
GFCs over YAGO with 4 million edges and 3000 training facts. On average, it
outperforms AMIE+ by 3.4 times. (2) GFCs can improve the accuracy of fact
checking models (Exp-2). For example, it achieves additional 30%, 20% and 5%
gain of precision over DBpedia, and 20%, 15% and 16% gain of F1 score over
Wikidata when compared with AMIE+, PRA, and KGMiner, respectively. (3) Our
case study shows that GFact yields interpretable models (Exp-3).

We next report the details of our findings.

Exp-1: Efficiency. We report the efficiency of GFC stream, compared with
AMIE+, GFC batch and PRA over DBpedia. As KGMiner has unstable learning
time and is not comparable, the result is omitted.

Varying |E|. Fixing |Γ+| = 15K, support threshold σ = 0.1, confidence thresh-
old θ = 0.005, k = 200, we sampled 5 graphs from DBpedia, with size (number
of edges) varied from 0.6M to 1.8M . Figure 4(a) shows that all methods take
longer time over larger |E|, as expected. (1) GFC stream is on average 3.2 (resp.
4.1) times faster than AMIE+ (resp. GFC batch) due to its approximate match-
ing scheme and top-k selection strategy. (2) Although AMIE+ is faster than
GFC stream over smaller graphs, we find that it returns few rules due to low
support. Enlarging rule size (e.g., to 5), AMIE+ does not run to completion.
(3) The cost of PRA is less sensitive due to that it samples a (predefined) fixed
number of paths.

Varying |Γ+|. Fixing |E| = 1.5M,σ = 0.1, θ = 0.005, k = 200, we varied |Γ+|
from 3K to 15K. As shown in Fig. 4(b), while all the methods take longer time
for larger |Γ+|, GFC stream scales best with |Γ+| due to its stream selection
strategy. GFC stream achieves comparable efficiency with PRA, and outperforms
GFC batch and AMIE+ by 3.54 and 5.1 times on average, respectively.
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Fig. 4. Efficiency of GFC stream

Table 1. Effectiveness: average accuracy.

Model YAGO DBpedia Wikidata MAG

Pred Prec Rec F1 Pred Prec Rec F1 Pred Prec Rec F1 Pred Prec Rec F1

GFact 0.89 0.81 0.60 0.66 0.91 0.80 0.55 0.63 0.92 0.82 0.63 0.68 0.90 0.86 0.62 0.71

GFactR 0.73 0.40 0.75 0.50 0.70 0.43 0.72 0.52 0.85 0.55 0.64 0.55 0.86 0.78 0.55 0.64

AMIE+ 0.71 0.44 0.76 0.51 0.69 0.50 0.85 0.58 0.64 0.42 0.78 0.48 0.70 0.53 0.62 0.52

PRA 0.87 0.69 0.34 0.37 0.88 0.60 0.41 0.45 0.90 0.65 0.51 0.53 0.77 0.88 0.21 0.32

KGMiner 0.87 0.62 0.36 0.40 0.88 0.75 0.60 0.63 0.90 0.63 0.49 0.52 0.76 0.74 0.17 0.27

Varying σ. Fixing |E| = 1M, θ = 0.005, k = 200, we varied σ from 0.05 to 0.25.
As shown in Fig. 4(c), GFC batch takes longer time over smaller σ, due to more
patterns and GFC candidates need to be verified. On the other hand, GFC stream
is much less sensitive. This is because it terminates early without verifying all
patterns.

Varying k. Fixing G = 1.5M , σ = 0.1, θ = 0.005, we varied k from 200 to 1000.
Figure 4(d) shows that GFC stream is more sensitive to k due to it takes longer
to find k best patterns for each sieve value. Although GFC batch is less sensitive,
the major bottleneck is its verification cost. In addition, we found that with
larger ε, less number of patterns are needed, thus GFC stream takes less time.

Exp-2: Accuracy. We report the accuracy of all the models in Table 1.

Rule-Based Models. We apply the same support threshold σ = 0.1 for AMIE+
and GFactR. We set θ = 0.005 for GFactR, and set k = 200. We sample 20 triple
patterns r(x, y) and report the average accuracy. As shown in Table 1, GFactR
constantly improves AMIE+ with up to 21% gain in prediction rate, and with
comparable performance for other cases. We found that AMIE+ reports rules
with high support but not necessarily meaningful, while GFCs capture more
meaningful context (see Exp-3). Both models have relatively high recall but low
precision, due to that they have better chance to cover missing facts but may
introduce errors when hitting false facts.

Supervised Models. We next compare GFact with supervised link prediction mod-
els (Table 1). GFact achieves the highest prediction rates and F1 scores. It out-
performs PRA with 12% gain on precision and 23% gain on recall on average, and
outperforms KGMiner with 16% gain on precision and 19% recall. Indeed, GFact
extracts useful features from GFCs with both high significance and diversity,
beyond path features.
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Fig. 5. Impact factors to accuracy

We next evaluate the impact of factors to the model accuracy using Wikidata.

Varying σ and θ. Fixing |Γ+| = 135K, we varied σ from 0.05 to 0.25 for both
GFact and GFactR. We select 20 patterns with 0.02 confidence and 20 patterns
with 0.04 confidence, respectively. Figure 5(a) shows that both GFact and GFactR
has lower prediction rate when support threshold (resp. confidence) is higher
(resp. lower). This is because fewer patterns can be discovered with higher sup-
port, leading to more “misses” in facts; while higher confidence lead to stronger
association of patterns and more accurate predictions. In general, GFact achieves
higher prediction rate than GFactR.

Varying |Γ+|. Fixing σ = 0.01, θ = 0.005, k = 200, we vary |Γ+| from 75K
to 135K as shown in Fig. 5(b). It tells us that GFact and GFactR have higher
prediction rate with more positive examples. Their precisions (not shown) follow
the similar trend.

Varying k. Fixing σ = 0.01, θ = 0.005, |Γ+| = 2500, we varied k from 50 to 250.
Figure 5(c) shows the prediction rate first increases, and then decreases. For
rule-based model, more rules increase the accuracy by covering more true facts,
while increasing the risk of hitting false facts. For supervised link prediction, the
model will be under-fitting with few features for small k, and will be over-fitting
with too many features due to large k. We observe that k = 200 is a best setting
for high prediction rate.

Varying b. Fixing |E| = 4M,σ = 0.01, k = 1000 and θ = 0.005, we select 200
size-2 patterns and 200 size-3 patterns to train the models. Figure 5(d) verifies
an interesting observation: smaller patterns contribute more to recall and larger
patterns contribute more to precision. This is because smaller patterns are more
likely to “hit” new facts, while larger patterns have stricter constraints for correct
prediction of true fact.

Exp-3: Case Study. We perform case studies to evaluate the application of
GFCs.

Accuracy. We show 3 relations and report accuracy in Fig. 6. These relations are
non-functional, and may contain incomplete subjects and objects, where PCA
may not hold [11]. We found that GFact complements AMIE+ and mitigate such
disruptions with context enforced by graph patterns.
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Fig. 6. Accuracy: case study. Fig. 7. Real-world GFCs discovered by
GFact

Interpretability. We further illustrate two top GFCs in Fig. 7, which contribute
to highly important features in GFact with high confidence and significance over
a real-world financial network Offshore and DBpedia, respectively.

(1) GFC ϕ3 : P3(x, y) → has same name and reg date(x, y) states that two
(anonymous) companies are likely to have the same name and registration
date if they share shareholder and beneficiary, and one is registered and
within jurisdiction in Panama, and the other is active in Panama. This
GFC has support 0.12 and confidence 0.0086, and is quite significant. For
the same r(x, y), AMIE+ discovers a top rule as registerIn(x, Jurisdic-
tion in Panama) ∧ registerIn(y, Jurisdiction in Panama) implies x and y
has the same name and registration date. This rule has a low prediction
rate.

(2) GFC ϕ4 : P4(x, y) → relevant(x, y) states that a TV show and a film
have relevant content if they have the common language, authors and
producers. This GFC has support 0.15 and a high confidence and signifi-
cant score. Within bound 3, AMIE+ reports a top rule as Starring(x, z)∧
Starring(y, z) → relevant(x, y), which has low accuracy.

6 Conclusion

We have introduced GFCs, a class of rules that incorporate graph patterns to
predict facts in knowledge graphs. We developed a stream-based rule discovery
algorithm to find useful GFCs for observed true and false facts. We have shown
that GFCs can be readily applied as rule models or provide useful instance-level
features in supervised link prediction. Our experimental study has verified the
effectiveness and efficiency of GFC-based techniques. We are evaluating GFCs
with real-world graphs and pattern models. One future topic is to develop scal-
able GFCs-based models and methods with parallel graph mining and distributed
rule learning.

Acknowledgments. This work is supported in part by NSF IIS-1633629 and Huawei
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