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Abstract
Given a knowledge graph and a fact (a triple statement), fact checking is to decide whether the fact belongs to the missing part of 
the graph. Facts in real-world knowledge bases are typically interpreted by both topological and semantic context that is not fully 
exploited by existing methods. This paper introduces a novel fact checking method that explicitly exploits discriminant subgraph 
structures. Our method discovers discriminant subgraphs associated with a set of training facts, characterized by a class of graph 
fact checking rules. These rules incorporate expressive subgraph patterns to jointly describe both topological and ontological 
constraints. (1) We extend graph fact checking rules ( ���� ) to a class of ontological graph fact checking rules ( ����� ). ����� 
generalize ���� by incorporating both topological constraints and ontological closeness to best distinguish between true and 
false fact statements. We provide quality measures to characterize useful patterns that are both discriminant and diversified. (2) 
Despite the increased expressiveness, we show that it is feasible to discover ����� in large graphs with ontologies, by developing 
a supervised pattern discovery algorithm. To find useful ����� as early as possible, it generates subgraph patterns relevant to 
training facts and dynamically selects patterns from a pattern stream with a small update cost per pattern. We verify that ����� 
can be used as rules and provide useful features for other statistical learning-based fact checking models. Using real-world 
knowledge bases, we experimentally verify the efficiency and the effectiveness of ����-based techniques for fact checking.
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1  Introduction

Knowledge graphs have been utilized to support emerging 
applications, for example, Web search [8], recommenda-
tion [33], and decision making [17]. Real-life knowledge 
bases often contain two components: (1) a knowledge graph 
G that consists of a set of facts, where each fact is a triple 
statement 〈 vx , �, vy 〉, that contains a subject entity vx , an 
object entity vy , and a predicate r that encodes the relation-
ship between vx and vy ; and (2) an external ontology O [7, 
35, 46] to support organizing meta-data such as types and 
labels. An ontology is typically a graph that contains a set of 

concepts and their relationships in terms of semantic close-
ness, such as ���������� , �������� , ������� [2, 46, 48]. 
Among the cornerstones of knowledge base management is 
the task of fact checking. Given a knowledge graph G and a 
fact t, it is to decide whether t belongs to the missing part of 
G. The verified facts can be used to (1) directly refine incom-
plete knowledge bases [3, 8, 23, 32], (2) provide cleaned 
evidence for error detection in dirty knowledge bases [4, 16, 
27, 44], (3) improve the quality of knowledge search [31, 
34], and (4) integrate multiple knowledge bases [8, 10].

Facts in knowledge graphs are often associated with non-
trivial regularities that are jointly described by imposing 
both topological constraints and ontological closeness. Such 
regularities can be captured by subgraphs associated with 
the facts. How to exploit these associated subgraphs and 
ontologies to effectively support fact checking in knowledge 
graphs? Consider the following example.

Example 1.  The graph G1 in Fig. 1 illustrates a fraction of 
DBpedia [23] that depicts the facts about philosophers (e.g., 
“Plato”). The knowledge base is associated with an ontology 
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O1 , which depicts semantic relationships among the concepts 
(e.g., “philosopher”) that are referred by the entity type in 
G1 . A user is interested in finding “whether a logician (‘Cic-
ero’) or a theologian (‘St. Augustine’) as vx is influenced by 
a philosopher (‘Plato’) as vy”.

It is observed that graph patterns help explain the exist-
ence of certain entities and relationships in knowledge 
bases [26]. Consider a rule represented by a graph pattern 
P1 associated with philosophers, which states that “if a phi-
losopher vxgave one or more speeches that cited a book of 
vywith the same topic, then vxis likely to be influenced by 
vy ”. One may want to apply this rule to verify whether Cic-
ero is influenced by Plato. Nevertheless, such rule cannot be 
directly applied, as Cicero is not directly labeled by “philoso-
pher”. On the other hand, as “logician” (resp. “masterpiece”) 
is a type semantically close to the concept “philosopher” 
(resp. “speech”) in the philosopher ontology O1 , “Cicero” 
and “Plato” should be considered as matches of P1 , and the 
triple 〈Cicero, ������������ , Plato〉 should be true in G1 . 
Similarly, another fact 〈St. Augustine, ������������ , Plato〉 
should be identified as true facts, given that (a) “theologian” 
and “writtenWork” are semantically close to “philosopher” 
and “book” in O1 , respectively, and (b) there is a subgraph of 
G1 that contains “St. Augustine” and “Plato,” and matches P1.

Consider another example, a business knowledge base G2 
from a fraction of a real-world offshore activity network [19] 
in Fig. 1. To find whether an active broker (close to active 
intermediary) � is likely to serve a company � in transi-
tion, a pattern P2 that explains such an action may identify G2 
by stating that “ A is likely an intermediary of C if it served for 
a dissolved (closed) company D , which has the same share-
holder O and one or more service providers with C”.

Subgraph patterns with “weaker” constraints may not 
explain facts well. Consider a graph pattern P′

1
 obtained 

by removing the edge �����  (speech, book) from P1 . 
Although “Cicero” and “Plato” match P′

1
 , a false fact 

〈Cicero, ������������ , John Stuart Mill〉 also matches 

P′
1
 because “John Stuart Mill” also has a book belong-

ing to the “Ancient Philosophy” (not shown). Thus, P′
1
 

alone does not distinguish between true and false facts for 
������������ (philosopher, philosopher) well. However, 
as “Cicero” does not have a speech citing a book of “John 
Stuart Mill,” the fact is identified as false by P1 , since it 
does not satisfy the constraints.

These graph patterns can be easily interpreted as rules, 
and the matches of the graph patterns readily provide 
instance-level evidence to “explain” the facts. These 
matches also indicate more accurate predictive models 
for various facts. We ask the following questions: How 
to jointly characterize and discover useful patterns with 
subgraphs and ontologies? and How to use these patterns 
to support fact checking in large knowledge graphs?

Contribution. We propose models and algorithms that 
explicitly incorporate discriminant subgraphs and ontolo-
gies to support fact checking in knowledge graphs.

(1) We extend graph fact checking rules ( ����) [26] to 
a class of ontological graph fact checking rules ( ����� ) 
(Sect. 2). ����� incorporate discriminant graph patterns 
as the antecedent and generalized triple patterns as the 
consequent and build a unified model to check multiple 
types of facts by graph pattern matching with ontology 
closeness. We adopt computationally efficient pattern 
models and closeness functions to ensure tractable fact 
checking via �����.

We develop statistical measures (e.g., support, confi-
dence, significance, and diversity) to characterize useful 
����� (Sect. 3). Based on these measures, we formulate 
the top-k ���� discovery problem to mine useful ����� 
for fact checking.

(2) We develop a feasible supervised discovery algorithm 
to compute ����� over a set of training facts (Sect. 4). In 
contrast to conventional pattern mining, the algorithm solves 

Fig. 1   Facts and their associated 
subgraphs. Subgraphs suggest 
the existence of facts by jointly 
describing topology and seman-
tic constraints. These subgraphs 
can be identified by approxi-
mate graph pattern matching via 
associated ontologies
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a submodular optimization problem with provable optimal-
ity guarantees, by a single scan of a stream of patterns, and 
incurs a small cost for each pattern.

(3) To evaluate the applications of ����� , we apply 
����� to enhance rule-based and learning-based models 
to the fact checking task, by developing two such classifiers. 
The first model directly uses ����� as rules. The second 
model extracts instance-level features from the matches of 
patterns induced by ����� to learn a classifier (Sect. 4.2).

(4) Using real-world knowledge bases, we experimentally 
verify the efficiency of ����-based techniques (Sect. 5). 
We found that the discovery of ����� is feasible over large 
graphs. ����-based fact checking also achieves high accu-
racy and outperforms its counterparts using Horn clause 
rules and path-based learning. We also show that the models 
are highly interpretable by providing case studies.

Our work nontrivially extends graph fact checking rules 
( ���) [26] with the following new contributions that are 
not addressed by ��� techniques: (1) new rule models that 
incorporate semantic closeness in ontology beyond label 
equality, (2) improved rule discovery algorithms that incor-
porate ontological subgraph matching and ontological pat-
tern growth strategy, (3) a unified model for multiple types 
of facts with semantic closeness, which is unlike ���� that 
need to build a separate model for each single triple pattern, 
and (4) experimental studies that verify the effectiveness of 
adding ontologies to the ��� models.

Related work. We categorize the related work as follows.

Fact checking. Fact checking has been studied for unstruc-
tured data [13, 36] and structured (relational) data [18, 45], 
mostly relying on text analysis and crowd sourcing. Auto-
matic fact checking in knowledge graphs is not addressed in 
these work. Beyond relational data, the following methods 
have been studied to predict triples in graphs.

(1) Rule-based models extract association rules to pre-
dict facts. ���� (or its improved version ����+ ) discovers 
rules with conjunctive Horn clauses [14, 15] for knowledge 
base enhancement. Beyond Horn rules, GPARs [11] discover 
association rules in the form of Q ⇒ p , with a subgraph pat-
tern Q and a single edge p. It recommends users via co-
occurred frequent subgraphs.

(2) Supervised link prediction has been applied to train 
predictive models with latent features extracted from enti-
ties [8, 22]. Recent works make use of path features [5, 6, 
16, 37, 42]. The paths involving targeted entities are sam-
pled from 1-hop neighbors [6] or via random walks [16], or 
constrained to be shortest paths [5]. Discriminant paths with 
the same ontology are grouped to generate training examples 
in [37].

Rule-based models are easy to interpret but usually cover 
only a subset of useful patterns [31]. It is also expensive to 

discover useful rules (e.g., via subgraph isomorphism) [11]. 
On the other hand, latent feature models are more difficult 
to be interpreted [31] compared with rule models [15]. Our 
work aims to balance the interpretability and model con-
struction cost. (a) In contrast to ����  [15], we use more 
expressive rules enhanced with graph patterns to express 
both constant and topological context of facts. Unlike [11], 
we use approximate pattern matching for ����� instead of 
subgraph isomorphism, since the latter may produce redun-
dant examples and is computationally hard in general. (b) 
����� can induce useful and discriminant features from 
patterns and subgraphs, beyond path features [6, 16, 42]. 
(c) ����� can be used as a stand-alone rule-based method. 
They also provide context-dependent features to support 
supervised link prediction to learn highly interpretable mod-
els. These are not addressed in [11, 15].

Ontological graph pattern matching. Ontology-based pat-
tern matching has been proposed to replace the label equal-
ity with grouping semantically related labels [24, 46]. Wu 
et al. [46] revises subgraph isomorphism with a quantitative 
metric which measures the similarity between the query and 
its matches in the graph. We adopt ontology-based matching 
introduced in [46] and the closeness function between con-
cepts (labels) to find ����� with semantically related labels.

Graph pattern mining. Frequent pattern mining defined by 
subgraph isomorphism has been studied for a single graph. 
GRAMI [9] discovers frequent subgraph patterns without 
edge labels. Parallel algorithms are also developed for asso-
ciation rules with subgraph patterns [11]. In contrast, (1) we 
adopt approximate graph pattern matching for feasible fact 
checking, rather than subgraph isomorphism as in [9, 11]. 
(2) We develop a more feasible stream mining algorithm 
with optimality guarantees on rule quality, which incurs 
a small cost to process each pattern. (3) Supervised graph 
pattern mining over observed ground truth is not discussed 
in [9, 11]. In contrast, we develop supervised pattern discov-
ery algorithms that compute discriminant patterns that best 
distinguish between the observed true and false facts. None 
of these works discuss supervised graph pattern discovery 
and their applications for fact checking.

Graph dependency. Data dependencies have been extended 
to capture inconsistencies in graph data. Functional depend-
encies for graphs ( ����) [12] enforce topological and value 
constraints by incorporating graph patterns with variables 
and subgraph isomorphism. Ontology functional dependen-
cies (OFD) on relational data have been proposed to capture 
synonyms and is-a relationships defined in an ontology [2]. 
These hard constraints are useful for detecting and cleaning 
data inconsistencies for follow-up fact checking tasks [31]. 
On the other hand, they are often violated by incomplete 
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knowledge graphs [31] and thus can be overkill for discover-
ing useful substructures when applied to fact checking. We 
focus on “soft rules” to infer new facts toward data comple-
tion rather than identifying errors with hard constraints [34]. 
While hard rules are designed to enforce value constraints on 
node attribute values to capture data inconsistencies, ����� 
can be viewed as a class of association rules that incorpo-
rates approximate graph pattern matching with ontology 
closeness functions to identify missing facts. The semantics 
and applications of ����� are quite different from their 
counterparts in these data dependencies.

2 � Fact Checking with Graph Patterns

We review the notions of knowledge graphs and fact check-
ing. We then introduce a class of rules that incorporate graph 
patterns and ontologies for fact checking.

2.1 � Graphs, Ontologies, and Patterns

Knowledge graphs. A knowledge graph [8] is a directed 
graph G = (V ,E, L) , which consists of a finite set of nodes 
V, a set of edges E ⊆ V × V  . Each node v ∈ V  (resp. edge 
e ∈ E ) carries a label L(v) (resp. L(e)) that encodes the con-
tent of v (resp. e) such as types, names, or property values.

Ontologies. An ontology is a directed graph O = (Vo,Eo) , 
where Vo is a set of concept labels and Eo ⊆ Vo × Vo is a set 
of semantic relations among the concept nodes. In practice, 
an edge (l, l�) ∈ Eo may encode three types of relations [21], 
including: (a) equivalence states l and l′ are semantically 
equivalent, thereby representing “refersTo” or “knownAs”; 
(b) hyponyms states that l is a kind of l′ , such as “isA” or 
“subclassOf” that enforces a preorder over Vo ; and (c) 
descriptive states that l is described by another l′ in terms 
of, for example, “association,” “partOf” or “similarTo”. In 
practice, an ontology may encode taxonomies, thesauri, or 
RDF schemas.

Label closeness function Given an ontology O and a concept 
label l, a label closeness function ����(⋅) computes a set 
of labels close to l, i.e., ����(l,O) = {l�|����(l, l�) ≤ 1 − �} , 
where (1) ����(⋅) ∶ Vo × Vo → [0, 1] computes a relevant score 
between l and l′ , and (2) � (resp. (1 − �) ) is a similarity (resp. 
distance) bound. One may set ����(l, l�) as the normalized 
sum of the edge weights along a shortest (undirected) path 
between l to l′ in O [21, 46]. For equivalence, hyponym, 
descriptive edges modeled in O, tunable weights w1 , w2, and 
w3 can be assigned respectively, to differentiate equivalence, 
inheritance, and association properties [21].

Example 2.  Consider the knowledge graph G1 in Fig. 1. 
A fact 〈 vx , � , vy 〉 = 〈Cicero, ������������ , Plato〉 
is encoded by an edge in G with label “ ��� ��������� ” 
between the subject node vx and the object node vy . The 
label of vx encodes its name “Cicero” and carries a type 
x = “philosopher”; similarly for vy with name “Plato” and 
type y = “philosopher”. By setting w1 = 0.0 , w2 = 0.1 , 
and w3 = 0.4 , the corresponding ontology O1 of G1 (Fig. 1) 
suggests that (1) ����(theologian, philosopher) = 0.4 , ����
(theologian, logician) = 0.4 , and ����(philosopher, logician)
= 0.1 , and thus these concepts are close to each other if the 
threshold � = 0.6 ; (2) ����(speech, book) = 0.3 , ����(speech , 
writternWork) = 0.2 , and ����(book,writternWork) = 0.1 , and 
thus these concepts are close to each other if the threshold 
� = 0.7.

Fact checking in knowledge graphs. Given a knowledge 
graph G = (V, E, L) and a new fact t = 〈 vx , � , vy 〉 , where 
vx and vy are in G, and t ∉ E , the task of fact checking is to 
compute a model M to decide whether the relation r exists 
between vx and vy [31]. This task can be represented by a 
binary query in the form of 〈 vx , �? , vy 〉 , where the model M 
outputs “true” or “false” for the query.

We study how subgraphs and ontologies can be jointly 
explored to support effective fact checking for knowledge 
graphs. To characterize useful subgraphs and concept labels, 
we introduce a class of ontology-based subgraph patterns, 
which extends its counterpart in graph fact checking rules 
( ����) [26] with ontology closeness.

Subgraph patterns. A subgraph pattern P(x, y) =
(V

P
,E

P
, L

P
) is a directed graph that contains a set of pattern 

nodes VP and pattern edges EP , respectively. Each pattern 
node up ∈ VP (resp. edge ep ∈ EP ) has a label LP(up) (resp. 
LP(ep) ). Moreover, it contains two designated anchored 
nodes ux and uy in VP of types x and y, respectively. Spe-
cifically, when it contains a single pattern edge with label 
r between ux and uy , P is called a triple pattern, denoted as 
r(x, y).

We next extend the approximate pattern matching [26] 
with ontologies.

Ontological pattern matching. Given a graph G, a 
pattern P(x,  y), and a function ����(⋅) , for a pattern 
node vP of P(x, y), a node v in G is a candidate of vP if 
L(v) ∈ ����(LP(vP),O) . A candidate of a pattern edge eP = 
(vP, v

�
P
) in G is an edge e = (v, v�) such that (a) v (resp. v′ ) is 

a candidate of vP (resp. v′
P
 ), and (b) L(e) ∈ ����(LP(eP),O).

Match relation. Given P(x, y), G, O and function ����(⋅) , 
a pair of nodes (vx, vy) match P(x, y), or P covers the pair 
(vx, vy) , if (1) there exists a matching relation R ⊆ VP × V  
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such that for each pair (u, v) ∈ R , (a) v is a candidate of 
u (verified by the ontology closeness function ����(⋅) ), 
(b) for every edge eP = (u, u�) ∈ EP , there exists a can-
didate e′ = (v, v�) ∈ E and (u�, v�) ∈ R ; (c) for every edge 
e�
P
= (u�, u) ∈ EP , there exists a candidate e′′ = (v�, v) ∈ E 

and (u�, v�) ∈ R ; and (2) (ux, vx) ∈ R and (uy, vy) ∈ R , i.e., vx 
(resp. vy ) is a match of ux (resp. uy ), respectively.

Example 3.  Consider G1 and its associated ontology O1 in 
Fig. 1. Given the label “philosopher,” a set of close labels 
����(philosopher,O1) may include { philosopher, logi-
cian, theologian} . Similarly, ����(speech,O1) may include 
{speech, writtenWork, masterpiece} , and ����(book,O1) may 
contain {writtenWork, book}.

Remarks. As observed in [26, 28, 39, 40], subgraph patterns 
defined by, for example, subgraph isomorphism may be an 
overkill in capturing meaningful patterns and is computa-
tionally expensive (NP-hard). Moreover, it generates (expo-
nentially) many isomorphic subgraphs and thus introduces 
redundant features for model learning [26]. In contrast, it 
is in (|VP|(|VP| + |V|)(|EP| + |E|)) time to find whether a 
fact is covered by an approximate pattern [26]. The tracta-
bility carries over to the validation of ����� (Sect. 4). To 
ensure feasible fact checking in large knowledge graphs and 
ontologies, we shall consider ontological pattern matching 
to balance the expressiveness and computational cost of our 
rule model.

2.2 � Ontological Graph Fact Checking Rules

We now introduce our rule model that incorporates graph 
patterns and ontologies.

Rule model. An ontological graph fact checking rule 
(denoted as ���� ) is in the form of � ∶ P(x, y) → r(x, y) , 
where (1) P(x, y) and r(x, y) are two graph patterns carrying 
the same pair of anchored nodes (ux, uy) , and (2) r(x, y) is a 
triple pattern and is not in P(x, y).

Semantics. Given a knowledge graph G, an ontology O, and 
a closeness function ����(⋅) , an ���� � ∶ P(x, y) → r(x, y) 
states that “a fact  〈 vx , � , vy 〉 holds between vx and vy in G, if 
(vx, vy) is covered by P in terms of O and ����(⋅).”

Example 4.  Consider the patterns and graphs in Fig. 1. To 
verify the influence between two philosophers, an ���� 
is �1 ∶ P1(x, y) → ������������(x, y). Pattern P1 has two 
anchored nodes x and y, both with type philosopher, 
and covers the pair (������ , �����) in G1 . To verify the 
service between a pair of matched entities (�, �) , another 
���� is �2 ∶ P2(x, y) → ��������������(x, y). Note that 

with subgraph isomorphism, P1 induces two subgraphs of 
G1 that only differ by entities with label speech and mas-
terpiece. It is impractical for users to inspect such highly 
overlapped subgraphs with subgraph isomorphism.

Remarks. We compare ����� with two models below. 
(1) Horn rules are adopted by ����+  [14], in the form 
of 

⋀
Bi → r(x, y) , where each Bi is an atom (fact) carry-

ing variables. It mines only closed (each variable appears 
at least twice) and connected (atoms transitively share 
variables/entities to all others) rules. We allow general 
approximate graph patterns in ����� to mitigate miss-
ing data and capture richer context features for supervised 
models (Sect. 4). (2) The association rules with graph 
patterns [11] have similar syntax with ����� but adopt 
strict subgraph isomorphism for social recommendation. 
In contrast, we define ����� with semantics and quality 
measures (Sect. 3) specified for observed true and false 
facts to support fact checking. (3) The ��� model [26] is 
a special case of ����� in which ����(⋅) enforces label 
equality ( � = 1).

3 � Supervised ���� Discovery

To characterize useful ����� , we introduce a set of met-
rics that jointly measure pattern significance and rule 
models, which extend their counterparts from established 
rule models [15] and discriminant patterns [47], and are 
specialized for a set of training facts. We then formalize 
the supervised ���� discovery problem.

Statistical measures. Our measures are defined over a 
knowledge graph G, an ontology O (with function ����(⋅) ), 
and a set of training facts �  . The training facts �  consists 
of a set of true facts � + in G, and a set of false facts � − 
that are known not in G, respectively. Extending the sil-
ver standard in knowledge base completion [34], (1) � + 
can be usually sampled from manually cleaned knowledge 
bases [29]; and (2) � − are populated following the partial 
closed-world assumption (see “Confidence”).

We use the following notations. Given an ���� 
� ∶ P(x, y) → r(x, y) , a graph G, facts � + and � − , (1) P(� +) 
(resp. P(� −) ) refers to the set of training facts in � + (resp. 
� − ) that are covered by P(x, y) in � + (resp. � − ) in terms 
of O and ����(⋅) . P(� ) is defined as P(� +) ∪ P(� −) , i.e., 
all the facts in �  covered by P. (2) r(� +) , r(� −) , and r(� ) 
are defined similarly.
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Support and confidence. The support of an ���� 
� ∶ P(x, y) → r(x, y) , denoted by ����(�,G,� ) (or simply 
����(�) ), is defined as

Intuitively, the support is the fraction of the true facts that 
are instances of r(x, y), and those also satisfy the constraints 
of the subgraph pattern P(x, y) over the ontology O and the 
closeness function ����(⋅) . It extends the head coverage, a 
practical version for rule support [15] to address triple pat-
terns r(x, y) that has not many matches due to the incom-
pleteness of knowledge bases.

Given two patterns P1(x, y) and P2(x, y) , we say P2(x, y) 
refines P1(x, y) (denoted by P1(x, y) ⪯ P2(x, y) , if P1 is a sub-
graph of P2 and they pertain to the same pair of anchored 
nodes (ux, uy) . We show that the support of ����� pre-
serves anti-monotonicity in terms of pattern refinement.

Lemma 1.  For graph G ,  given any two ����� 
�1 ∶ P1(x, y) → r(x, y) and  �2 ∶ P2(x, y) → r(x, y) ,  i f 
P1(x, y) ⪯ P2(x, y) , ����(�2) ≤ ����(�1).

Proof sketch.  It suffices to show that any pair (vx2 , vy2 ) cov-
ered by P2 in G is also covered by P1(x, y) . Assume there 
exists a pair (vx2 , vy2 ) covered by P2 but not by P1 , and assume 
w.l.o.g. vx2 does not match the anchored node ux in P1 . Then, 
there exists either (a) an edge (ux, u) (or (u, ux) ) in P1 such 
that no edge (vx2 , v) (or (v, vx2 ) ) is a match, or (b) a node u as 
an ancestor or a descendant of ux in P1 , such that no ances-
tor or descendant of vx2 in G is a match. As P2 refines P1 , 
both (a) and (b) lead to that vx2 is not covered by P2 , which 
contradicts the definition of approximate patterns. 	�  □

Extending partial closed-world assumption. Following rule 
discovery in incomplete knowledge base [15], we extend par-
tial closed-world assumption ( ��� ) to characterize the con-
fidence of ����� . Given a triple pattern r(x, y) and a true 
instance 〈 vx , � , vy 〉 ∈ r(� +) , an ontology-based  ��� assumes 
that a missing instance 〈 vx , � , v′

y
 〉 of r(x, y) is a false fact if 

L(v�
y
) ∉ ����(L(vy),O) . In other words, for a given entity vx , it 

assumes that r(� +) contains all the true facts about vx that per-
tain to specific r. Given the ontology and the function ����(⋅) 
that tolerates concept label dissimilarity, it will identify a fact 
as false only when it claims a fact that connects vx and v′

y
 via 

r, and v′
y
 is not ontologically close to any known entity that is 

connected to vx via r. This necessarily extends the conventional 
��� (where ����(⋅) simply enforces label equality, i.e., � = 1 ) 
to reduce the impact of facts that may not be counted as “false” 
due to the true facts that are ontologically close to them.

����(�) =
|P(� +) ∩ r(� +)|

|r(� +)|

We define a normalizer set P(� +)N , which contains all the 
pairs (vx, vy) from P(� +) that have at least a false counter-
part under the ontology-based ��� . The confidence of � in 
G, denoted as ���� (�,G,� ) (or simply ���� (�) ), is defined as

The confidence measures the probability that an ���� holds 
over the entity pairs that satisfy P(x, y), normalized by the 
facts that are assumed to be false under ��� . We follow the 
ontology-based ��� to construct false facts in our experi-
mental study.

Significance. We next quantify how significant an ���� is in 
“distinguishing” between the true and false facts, by extending 
the G-test score [47]. This test verifies the null hypothesis of 
whether the number of true facts “covered” by P(x, y) fits to 
the distribution in the false facts. If not, P(x, y) is considered to 
be significant. Specifically, the score (denoted as ���(�, p, n) , 
or simply ���(�) ) is defined as

where p (resp. n) is the frequency of the facts covered by 
pattern P of � in � + (resp. � − ), i.e., p =

|P(�+)|
|�+|  (resp. 

n =
|P(�−)|
|�−|  ). As ���(�) is not anti-monotonic, a common prac-

tice is to use a “rounded up” score to find significant pat-
terns [47]. We adopt an upper bound of ���(�) , denoted as 
̂���(𝜑, p, n) (or ̂���(𝜑) for simplicity), which is defined as 
tanh(max{���(�, p, �), ���(�, �, n)}) , where � > 0 is a small 
constant (to prevent the case that ̂���(𝜑) = ∞ ), and ̂��� is 
normalized to [0, 1] by the hyperbolic function tanh(⋅) . We 
show the following results.

Lemma 2.  Given graph G, for any two ����� �1 ∶ P1(x, y) → 
r(x, y) and �2 ∶ P2(x, y) → r(x, y) ,  ̂���(𝜑2) ≤

̂���(𝜑1) if 
�1 ⪯ �2.

Proof.  As ̂���(𝜑) = tanh(max{���(𝜑, p, 𝛿), ���(𝜑, 𝛿, n)}) , it 
suffices to show that both ���(�, p, �) and ���(�, �, n) are anti-
monotonic in terms of rule refinement.

(1) As ���(�, p, �) = 2|� +|(p ln p

�
+ (1 − p) ln

1−p

1−�
) , the 

derivative w.r.t. p is

Also, as ���(�, �, n) = 2|� +|(� ln �

n
+ (1 − �) ln

1−�

1−n
) , the 

derivative w.r.t. n is

����(�) =
|P(� +) ∩ r(� +)|

|P(� +)N|

���(�) = 2|� +|
(
p ln

p

n
+ (1 − p) ln

1 − p

1 − n

)

���
�
p
(�, p, �) = 2|� +|

(
ln

p

1 − p
− ln

�

1 − �

)

���
�
n
(�, �, n) = 2|� +|

(
1 − �

1 − n
−

�

n

)
= 2|� +|

(
n − �

n(1 − n)

)
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W h e n  � ≤ min{p, n} ,  b o t h  ���
�
p
(�, p, �) ≥ 0  a n d 

���
�
n
(�, �, n) ≥ 0 . Hence, both ���(�, p, �) and ���(�, �, n) are 

monotonic w.r.t. p and n, respectively.

(2) Given Lemma  1, we have p2 ≤ p1 and n2 ≤ n1 
i f  �1 ⪯ �2  .  Then,  ���(�2, p2, �) ≤ ���(�1, p1, �) and 
���(�2, �, n2) ≤ ���(�1, �, n1) , thus

and therefore ̂���(𝜑2) ⪯
̂���(𝜑1) . This completes the proof of 

Lemma 2. 	�  □

Redundancy-aware selection. In practice, one wants to find 
����� with both high significance and low redundancy. 
Indeed, a set of ����� can be less useful if they “cover” the 
same set of true facts in � + . We introduce a bi-criteria func-
tion that favors significant ����� that cover more diversified 
true facts. Given a set of �����  , when the set of true facts 
� + is known, the coverage score of  , denoted as ���() , is 
defined as

The first term, defined as ���() =
�∑

𝜑∈
̂���(𝜑) , aggre-

gates the total significance of ����� in  . The second term 
is defined as

where �t() refers to the ����� in  that cover a true fact 
t ∈ � + . ���() quantifies the diversity of  and follows a 
reward function [25]. Intuitively, it rewards the diversity in 
that there is more benefit in selecting an ���� that covers 
new facts, which are not covered by other ����� in  yet. 
Both terms are normalized to (0,

√��].
The coverage score favors ����� that cover more distinct 

true facts with more discriminant patterns. We next show 
that ���(⋅) is well defined in terms of diminishing returns. 
That is, adding a new ���� � to a set  improves its sig-
nificance and coverage at least as much as adding it to any 
superset of  (diminishing gain to  ). This also verifies that 
���(⋅) employs submodularity [30], a property widely used 
to justify goodness measures for set mining. Define the mar-
ginal gain ��(�,) of an ���� � to a set  ( � ∉  ) as 
���( ∪ {�})-���() . We have the following result.

Lemma 3.  The function ���(⋅) is a monotone submodular 
function for ����� that is for any two sets 1 and 2 , (1) if 

max{���(�2, p2, �), ���(�2, �, n2)} ≤ max{���(�1, p1, �), ���(�1, �, n1)}

���() = ���() + ���()

���() =

⎛⎜⎜⎝
�
t∈�+

� �
�∈�t()

����(�)

⎞⎟⎟⎠
��� +�

1 ⊆ 2 , then ���(1) ≤ ���(2) , and (2) if 1 ⊆ 2 and for 
any ���� � ∉ 2 , ��(�,2) ≤ ��(�,1).

Proof.  We show that both parts pertaining to ���() , i.e., 
���() and ���() , are monotone submodular functions w.r.t. 
 , and therefore ���() is a monotone submodular function 
w.r.t. .

(1) We show that both ���() and ���() are monotone 
functions w.r.t.  . Each term ���(�) is positive, and the sum ∑

�∈1
���(�) ≤

∑
�∈2

���(�) , since every � in 1 is also in 
2 for any two sets 1 ⊆ 2 of ����� . Hence, ���() is a 
monotone function w.r.t. the set .

We denote the term 
�∑

�∈�t()
����(�) in ���() as 

Tt() . For each term Tt() in ���() , similarly, ����(�) is 
positive, and we have 

∑
�∈�t(1)

����(�) ≤
∑

�∈�t(2)
����(�) , 

since every � in �t(1) that covers t is also in �t(2) for any 
two sets 1 ⊆ 2 of ����� . Hence, each term Tt() in ���() 
is a monotone function w.r.t.  , and thus ���() is a mono-
tone function w.r.t. .

(2) Next, we show that both ���() and ���() are sub-
modular functions w.r.t.  . For any ���� �� ∉  , the 
marginal gain for ���() is: ���( ∪ {��}) − ���() = 
(
∑

�∈∪{��} ���(�))
1

2 − ���() = (���2() + ���(��))
1

2 − ���() 
= ���(��)

/
((���2() + ���(��))

1

2 + ���()) , which is an 
anti-monotonic function w.r.t. ���() . As ���() is mono-
tonic w.r.t.   , for any two sets 1 ⊆ 2 and �� ∉ 2 , 
���(2 ∪ {��}) − ���(2) ≤ ���(1 ∪ {��}) − ���(1) . Hence, 
���() is submodular w.r.t. .

Similarly,  for  any ���� �� ∉   ,  the  mar-
ginal  gain  of  ���(⋅) for  each term Tt() i s : 
Tt( ∪ {��}) − Tt() = (

∑
�∈�t(∪{�

�}) ����(�))
1

2 − Tt()   . 
If �′ does not cover t, then Tt( ∪ {��}) − Tt() = 0 . Other-
wise, if �′ covers t, following the similar process for ���() , we 
have Tt( ∪ {��}) − Tt() = ����(��)

/
(T2

t
() + ����(��))

1

2

Tt()) , which is an anti-monotonic function w.r.t. 
Tt() . As Tt() is monotonic w.r.t.   , for any two 
sets 1 ⊆ 2 and �� ∉ 2 ,  Tt(1) ≤ Tt(2) .  Hence, 
Tt(2 ∪ {��}) − Tt(2) ≤ Tt(1 ∪ {��}) − Tt(1) , no matter 
whether �′ covers t. Thus, each term Tt() in ���() is a sub-
modular function w.r.t.  and ���() is hence a submodular 
function w.r.t. .

In summary, both ���() and ���() are monotone sub-
modular functions w.r.t.  , and ���() is a monotone sub-
modular function w.r.t.  . Lemma 3 thus follows. 	�  □

We now formulate the top-k ���� discovery problem over 
observed facts.

Top-k supervised  ���� discovery. Given a graph G, a 
corresponding ontology O with an ontology closeness func-
tion ����(⋅) , a support threshold � , a confidence threshold 
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� , training facts �  as instances of a triple pattern r(x, y), and 
integer k, the problem is to identify a set  of top-k ����� 
that pertain to r(x, y), such that (a) for each ���� � ∈  , 
����(�) ≥ � , ���� (�) ≥ � , and (b) ���() is maximized.

4 � Discovery Algorithm

4.1 � Top‑k ���� Discovery

Unsurprisingly, the supervised discovery problem for ����� 
is intractable. A naive “enumeration-and-verify” algorithm 
that generates and verifies all k-subsets of ���� candidates 
is clearly impractical for large G, O, and �  . We introduce 
efficient algorithms with near-optimality guarantees. Before 
we introduce these algorithms, we first introduce a common 
building-block procedure that computes the pairs covered by 
a subgraph pattern (“pattern matching” procedure).

Procedure ������ . We start with procedure ������ , an 
ontology-aware graph pattern matching procedure. Given 
knowledge graph G, ontology O, and closeness function 
����(⋅) , for a subgraph pattern P(x, y), it computes the 
node pairs (vx, vy) that can be covered by P(x, y). In a nut-
shell, the algorithm extends the approximate matching 
procedure that computes a graph dual-simulation rela-
tion [28], while the candidates are dynamically determined 
by ����(⋅) and O. More specifically, ������ first finds the 
candidate matches v ∈ V  of each node u ∈ VP , such that v 
has a type that is close to u determined by ����(⋅) and O. 
It then iteratively refines the match set that violates topo-
logical constraints of P by the definition of the matching 
relation R, until the match set cannot be further refined.

Complexity. Note that it takes a once-for-all preprocess-
ing to identify all similar labels in the ontology O, in time 
(|VP|(|VO| + |EO|) , following a traversal of O. Given 
that O is typically small (and thus its diameter is a small 
constant), the computation of ����(⋅) for given labels is 
in O(1). It then takes ((|VP| + |V|)(|EP| + |E|)) time to 
compute the matching relation for each pattern.

We next introduce ���� discovery algorithms.

“Batch + Greedy”. We start with an algorithm (denoted 
as ����_����� ) that takes a batch pattern discovery and 
a greedy selection as follows. (1) Apply graph pattern 
mining (e.g., Apriori [20]) to generate and verify all the 
graph patterns   . The verification is specialized by an 
operator ������ , which invokes the pattern matching algo-
rithm ������ to compute the support and confidence for 
each pattern. (2) Invoke a greedy algorithm to do k ���� 

passes of  . In each iteration i, it selects the pattern Pi , 
such that the corresponding ���� �i ∶ Pi(x, y) → r(x, y) 
maximizes the marginal gain ���(i−1 ∪ {�i}) - ���(i−1) ,  
and then it updates i as i−1 ∪ {�i}.

����_����� guarantees a (1 − 1

e
) approximation, fol-

lowing Lemma 3 and the seminal result in [30]. Neverthe-
less, it requires the verification of all patterns before the 
construction of ����� . The selection further requires k 
passes of all the verified patterns. This can be expensive 
for large G and � .

We can do better: In contrast to “batch processing” the 
pattern discovery and sequentially applying the verifica-
tion, we organize newly generated patterns in a stream and 
interleave pattern generation and verification to assemble 
new patterns to top-k ����� with small update costs. This 
requires a single scan of all patterns with early termina-
tion, without waiting for all patterns to be verified. Capi-
talizing on stream-based optimization [1, 40], we develop 
a near-optimal algorithm to discover ����� . Our main 
results are shown below.

Theorem 1.  Given a constant � > 0, there exists a stream 
algorithm that computes top-k ����� with the following 
guarantees:

–	 (1) It achieves an approximation ratio ( 1
2
− �);

–	 (2) It performs a single pass of all processed patterns 
 , with update cost in O((b + |�b|)2 + log k

�
) , where b is 

the largest edge number of the patterns, and �b is the b 
hop neighbors of the entities in � .

As a proof of Theorem 1, we next introduce such a stream 
discovery algorithm.

“Stream + Sieve”. Our supervised discovery algorithm, 
denoted as ����_������ (illustrated in Fig. 2), interleaves 
pattern generation and ���� selection as follows.

Fig. 2   Algorithm ����_������  
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(1) Ontology-aware pattern stream generation. The algo-
rithm ����_������ invokes a procedure ���� to produce 
a pattern stream  (line 2 and 8). Unlike ����_����� that 
verifies patterns against entire graph G, it partitions facts 
�  to blocks and iteratively spawns and verifies patterns by 
visiting local neighbors of the facts in each block. This pro-
gressively finds patterns that better “purify” the labels of 
only those facts they cover and thus reduces unnecessary 
enumeration and verification. Instead of using exact match-
ing triples [26], ���� leverages the ontology O and the 
closeness function ����(⋅) to group ontologically similar 
triples for partitioning.

(2) Selection on-the-fly. ����_������ invokes a proce-
dure ���� (line 7) to select patterns and construct ����� on 
the fly. To achieve the optimality guarantee, it applies the 
stream-sieving strategy in stream data summarization [1]. 
In a nutshell, it estimates the optimal value of a monotonic 
submodular function F(⋅) with multiple “sieve values,” ini-
tialized by the maximum coverage score of single patterns 
(Sect. 3), i.e., �������=maxP∈ (���(P)) (lines 4-5), and 
eagerly constructs ����� with high marginal benefits that 
refines sieve values progressively.

The above two procedures interact with each other: Each 
pattern verified by ���� is sent to ���� for selection. The 
algorithm terminates when no new pattern can be verified 
by ���� or the set  can no longer be improved by ���� (as 
will be discussed). We next introduce the details of proce-
dures ���� and ����.

Procedure ���� . Procedure ���� improves its “batch” 
counterpart in ����_����� by locally generating patterns 
that cover particular sets of facts, following a manner of 
decision tree construction. It maintains the following struc-
tures in each iteration i: (1) a pattern set i , which contains 
graph patterns of size (number of pattern edges) i, and is 
initialized as a size-0 pattern that contains anchored nodes 
ux and uy only; (2) a partition set �i(P) , which records the 
sets of facts P(� +) and P(� +) , is initialized as {� +,� −} , for 
each pattern P ∈ i . At iteration i, it performs the following.

(1) For each block B ∈ �i−1 , ���� generates a set of graph 
patterns i with size i. A size-i pattern P is constructed by 
adding a triple pattern e(u, u�) to its size-(i − 1 ) counterpart 
P′ in i−1 . Moreover, it only inserts e(u, u�) with instances 
from the neighbors of the matches of P′ based on closeness 
function ����.

(2) For each pattern P ∈ i , ���� computes its support, 
confidence, and significance (G-test) by invoking proce-
dure ������ as in the algorithm ����_����� and prunes 
i by removing unsatisfied patterns. It refines P�(� +) 
and P�(� −) to P(� +) and P(� −) accordingly. Note that 
P(𝛤 +) ⊆ P�(𝛤 +) , and P(𝛤 −) ⊆ P�(𝛤 −) . Once a promising 
pattern P is verified,  ���� returns P to procedure ���� for 
the construction of top-k ����� .

Procedure ���� . To compute the set of �����  that maxi-
mizes ���() for a given r(x, y), it suffices for procedure ���� 
to compute top-k graph patterns that maximize ���() 
accordingly. It solves a submodular optimization problem 
over the pattern stream that specializes the sieve-streaming 
technique [1] to �����.

Sieve streaming. [1, 26] Given a monotone submodular func-
tion F(⋅) , a constant �>0, and element set  , sieve streaming 
finds top-k elements  that maximizes F() as follows. It first 
finds the largest value of singleton sets m = maxe∈ F({e}) 
and then uses a set of sieve values (1 + �)j (j is an integer) to 
discretize the range [m, k ∗ m] . As the optimal value, denoted 
as F(∗) , is in [m, k ∗ m] , there exists a value (1 + �)j that 
“best” approximates F(∗) . For each sieve value v, a set 
of top patterns v is maintained, by adding patterns with a 
marginal gain at least ( v

2
− F(v))∕(k − |v|) . It is shown that 

selecting the sieve of best k elements produces a set  with 
F() ≥ (

1

2
− �)F(∗) [1].

A direct application of the above sieve streaming for 
����� seems infeasible: One needs to find the maximum 
���(�) (or ���(P) for fixed r(x, y)), which requires to verify 
the entire pattern set. Capitalizing on data locality of graph 
pattern matching, Lemma 3, and Lemma 1, we show that this 
is doable for ����� with a small cost.

Lemma 4.  It is in O(|�1|) time to compute the maximum 
���(P).

This can be verified by observing that ���(⋅) also pre-
serves anti-monotonicity in terms of pattern refinement, 
because ���() is an aggregation of ���(�) and ���() is an 
aggregation of support, both of which hold the anti-mono-
tonicity for single patterns. For any two patterns P(x, y) and 
P�(x, y) , if P ⪯ P� , ���( ∪ {P�}) ≤ ���( ∪ {P}) . Thus, 
the value maxP∈ ���(P) must be from a single-edge pat-
tern. That is, procedure ���� only needs to cache at most 
|�1| size-1 patterns from ���� to find the global maximum 
���(P) (lines 4-5 of ����_������).

Fig. 3   Procedure ���� : Sieve values induce sieve sets to cache promis-
ing subgraph patterns. Subgraph patterns are verified and top patterns 
are selected in iterative discovery and selection
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The rest of ���� follows the sieve-streaming strategy, as 
illustrated in Fig. 3. The ����� are constructed with the 
top-k graph patterns (line 8).

Optimization. To further prune unpromising patterns, pro-
cedure ���� estimates an upper bound �̂�(P,vj

) (line 5 of 

���� ) without verifying a new size-b pattern P. If 
�̂�(P,vj

) < (
vj

2
− ̂���(vj

))
/
(k − |vj

|) , P is skipped without 

further verification.
To this end, ���� f irst  traces to an ���� 

�� ∶ P�(x, y) → r(x, y) , where P′ is a verified sub-pattern of 
P, and P is obtained by adding a triple pattern r′ to P′ . It 
estimates an upper bound of the support of the ���� 
� ∶ P(x, y) → r(x, y) as ̂����(𝜑) = ����(𝜑�)- l

|r(�+)| , where l is 

the number of the facts in r(� +) that have no match of r′ in 
their i hop neighbors (thus cannot be covered by P). Simi-
larly, one can estimate an upper bound for p and n in ���(⋅) 
and thus get an upper bound ̂���b(𝜑) for ̂���(𝜑) . For each t in 
� + , denote term 

�∑
�∈�t()

����(�) in ���() as Tt() ; it 

then computes �̂�(P,) as

To see that �̂�(P,) is an upper bound for ��(P,) , one may 
note that the marginal gains for the significance part ̂���() and 
the diversity part ���() are both defined in terms of square 
roots. Given any two positive numbers a1 and  a2 , an upper 
bound of 

√
a1 + a2 −

√
a1 is 

a2

2
√
a1

 . We apply  this inequality to 

each square root term. Take significance for example, 
���( ∪ {P}) − ���() ≤

√
���

2() + ̂���b(P) −

√
���

2()   . 

When substituting a1 and a2 in the inequality by ���2() and 
̂���b(P) , respectively, we can have the upper bound 

̂���b(𝜑)

2���()
 . For 

the other terms in ���() , we can apply the inequality simi-
larly to obtain the upper bound for each square root term.

Performance analysis. Denote the total patterns verified 
by ����_������ as  , it takes O(||(b + |�b|)2) time to 
compute the pattern matches and verify the patterns. Each 
time a pattern is verified, it takes O( log k

�
) time to update 

the set v . Thus, the update time for each pattern is in 
O((b + |� |b)2 + log k

�
).

The approximation ratio follows the analysis of optimiz-
ing stream summarization [1], by viewing patterns as data 
items that carry a benefit, and the general pattern coverage 
as the utility function to be optimized. Specifically, (1) there 

�̂�(P,) =
̂���b(𝜑)

2���()
+

( ∑
t∈P(𝛤+)

̂����(𝜑)

2Tt()

)/|𝛤 +|

exists a sieve value vj = (1 + �)j ∈ [�������, k ∗ �������] 
that is closest to F(∗) , say, (1 − 2�)F(∗) ≤ vj ≤ F(∗) ; 
and (2) the set vj

 is a ( 1
2
− �) answer for an estimation of 

F(∗) with sieve value vj . Indeed, if ��(P,vj
) satisfies the 

test in ���� (line 5), then ���(vj
) is at least vj||

2k
=

vj

2
 (when 

|| = k ). Following [1], there exists at least a value vj ∈ V 
that best estimates the optimal ���(⋅) and thus achieves 
approximation ratio ( 1

2
− �) . Thus, selecting ����� with 

patterns from the sieve sets having the largest coverage guar-
antees approximation ratio ( 1

2
− �).

The above analysis completes the proof of Theorem 1.

4.2 � ����‑based Fact Checking

The ����� can be applied to enhance fact checking as rule 
models or via supervised link prediction. We introduce two 
����-based models.

Generating training facts. Given a knowledge graph G 
= (V, E, L) and a triple pattern r(x, y), we generate train-
ing facts �  as follows. (1) For each fixed r(x, y), a set of 
true facts � + is sampled from the matches of r(x, y) in the 
knowledge graph G. For each true fact 〈 vx , � , vy 〉 ∈ � + , 
we further introduce “noise” by replacing their labels to 
semantically close counterparts asserted by ontology labels 
from O and ����(⋅) . This generates a set of true facts that 
approximately match r(x, y). (2) Given � + , a set of false 
facts � − is sampled under the ontology-based PCA (Sect. 3). 
A missing fact t= vx , � , v′

y
 is considered as a false fact only 

when (a) there exists a true fact 〈 vx , � , vy 〉 in � + , and (b) 
L(vy) ∉ ����(L(v�

y
),O) . We follow the silver standard [34] 

to only generate false facts that are not seen in the existed 
facts in G, thus � + ∩ � − = ∅.

Using  ����� as rules. Given facts �  , a rule-based model, 
denoted as �����R , invokes algorithm ����_������ to dis-
cover top-k �����  as fact checking rules. Given a new 
fact t= vx , � , vy , it follows a “hit and miss” convention [15] 
and checks whether there exists an ���� � in  that cov-
ers t (i.e., both the consequent and antecedent of � cover t), 
in terms of ontology O and function ����(⋅) . If so, �����R 
accepts t, otherwise, it rejects t.

Using ����� in supervised link prediction. Useful 
instance-level features can be extracted from the patterns 
and their matches induced by ����� to train classifiers. We 
develop a second model (denoted as ����� ) that adopts the 
following specifications. For each example t= 〈 vx , � , vy 〉 
∈ �  , ����� constructs a feature vector of size k, where each 
entry encodes the presence of the ith ���� �i in the top-k 
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�����  . The class label of the example t is true (resp. 
false) if t ∈ � + (resp. � −).

By default, ����� adopts logistic regression, which is 
experimentally verified to achieve slightly better perfor-
mance than others (e.g., Naive Bayes and SVM). We find 
that ����� outperforms �����R over real-world graphs (See 
Sect. 5).

5 � Experimental Study

Using real-world knowledge bases, we empirically evaluate 
the efficiency of ���� discovery and the effectiveness of 
����-based fact checking.

Knowledge Graphs. We used five real-world knowledge 
graphs, including (1) ����  [41] (version 2.5), a knowl-
edge base that contains 2.1M entities with 2273 distinct 
labels, 4.0M edges with 33 distinct labels, and 15.5K tri-
ple patterns; (2) �������  [23] (version 3.8), a knowledge 
base that contains 2.2M entities with 73 distinct labels, 
7.4M edges with 584 distinct labels, and 8.2K triple pat-
terns; (3) ��������  [43] (RDF dumps 20160801), a knowl-
edge base that contains 10.8M entities with 18383 labels, 
41.4M edges of 693 relationships, and 209K triple patterns; 
(4) ���  [38], a fraction of an academic graph with 0.6M 
entities (e.g., papers, authors, venues, affiliations) of 8565 
labels and 1.71M edges of six relationships (cite, coauthor-
ship); and (5) ��������  [19], a social network of offshore 
entities and financial activities, which contains 1M entities 
(e.g., company, country, person, etc.) with 357 labels, 3.3M 
relationships (e.g., establish, close, etc.) with 274 labels, and 
633 triple patterns. We use �������� mostly for case studies.

Ontologies. We have extracted ontologies for each knowl-
edge graphs, either from their knowledge base sources like 
����

1, �������2, and ��������
3. For datasets that do not 

have external ontologies such as ��� and �������� , we 
extend graph summarization [40] to construct ontologies. 
Specifically, we start with a set of manually selected seed 
concept labels (e.g., conferences, institutions and authors 
from ��� ) and extend these ontologies by grouping their 
frequently co-occurred labels in the node content (e.g., ven-
ues, universities, collaborators). We manually cleaned these 
ontologies to ensure their applicability.

Methods. We implemented the following methods in JAVA: 
(1) ����_������ , compared with (a) its “Batch + Greedy” 
counterpart ����_����� (Sect. 4), (b) ����+ [14] that dis-
covers ���� rules, (c) ���  [22], the path ranking algorithm 
that trains classifiers with path features from random walks, 
and (d) �������  [37], a variant of PRA that makes use of 
features from discriminant paths; (2) fact checking mod-
els �����R and ����� , compared with learning models (and 
also denoted) by ����+ , ��� , and ������� , respectively. 
For practical comparison, we set a pattern size (the number 
of pattern edges) bound b = 4 for ���� discovery.

Ontology closeness. We apply weighted path lengths in 
����(⋅) , in which each edge on a path has a weight accord-
ing to one of the three types of relations (Sect. 2.1) (1) Given 
ontology O and two labels l and l′ , the closeness of l and l′ is 
defined as 1 − ����(l, l�) , where ����(l, l�) is the sum of weights 
on the shortest path between l and l′ in the ontology O, nor-
malized in range [0, 1]. (2) Given a threshold � , ����(l,O) 
is defined as all the concept labels from O with closeness 
no less than � . By default, we set � = 1, i.e., the subgraph 
patterns enforce label equality by ensuring ����(l, l�) = 0, 
which is same as ���� . As will be shown, varying � pro-
vides trade-off between discovery cost and model accuracy.

Model configuration. For a fair comparison, we made effort 
to calibrate the models and training/testing sets with consist-
ent settings. (1) For the supervised link prediction methods 
( ����� , ��� , and ������� ), we sample 80% of the facts in 
a knowledge graph as the training facts �  , and 20% edges as 
testing set   . For example, we use in total 107 triple patterns 
over ������� , and each triple pattern has 5K-50K instances. 
In �  (resp.   ), 20% are true examples � + (resp.  + ), and 
80% are false examples � − (resp.  − ). We generate � − and 
 − under ontology-based ��� (Sect. 3) for all the models. 
For all methods, we use logistic regression to train the clas-
sifiers (which is the default settings of ��� and ������� ). 
(2) For rule-based �����R and ����+ , we discover rules 
that cover the same set of � + . We set the size of ����+ rule 
body to be 3, comparable to the number of pattern edges in 
our work. (3) We evaluate the impact of ontology closeness 
constraints to the efficiency and the effectiveness of ����- 
based models, by varying the closeness threshold �.

Overview of results. We find the following. (1) It is feasible 
to discover ����� in large graphs (Exp-1). For example, 
it takes 211 seconds for ����_������ to discover ����� 
over ���� with 4 million edges and 3000 training facts. 
On average, it outperforms ����+ by 3.4 times. (2) ����� 
can improve the accuracy of fact checking models (Exp-2). 
For example, it achieves additional 30% , 20%, and 5% gain 
of precision over ������� , and 20% , 15%, and 16% gain of 
F1 score over �������� when compared with ����+ , ��� , 

1  http://resou​rces.mpi-inf.mpg.de/yago-naga/yago3​.1/yagoT​axono​
my.tsv.7z.
2 �������:http://mappi​ngs.dbped​ia.org/serve​r/ontol​ogy/class​es/.
3  https​://tools​.wmfla​bs.org/wikid​ata-expor​ts/rdf/expor​ts/20160​801/
dump_downl​oad.html.

http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTaxonomy.tsv.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTaxonomy.tsv.7z
http://mappings.dbpedia.org/server/ontology/classes/
https://tools.wmflabs.org/wikidata-exports/rdf/exports/20160801/dump_download.html
https://tools.wmflabs.org/wikidata-exports/rdf/exports/20160801/dump_download.html
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and ������� , respectively. (3) The ontological closeness 
���� and threshold � enable trade-offs between discover-
ing cost and effectiveness. With smaller threshold � , while 
����_������ takes more time to discover ����� , these 

rules can cover more training instances and verify more 
missing facts that are not covered by their counterparts 
induced by larger � . (4) Our case study shows that ����� 
yields interpretable models (Exp-3).

Fig. 4   Efficiency of 
����_������

(a) Varying |E| (DBpedia) (b) Varying |E| (Wikidata)

(c) Varying |Γ+| (DBpedia) (d) Varying |Γ+| (Wikidata)

(e) Varying σ (DBpedia) (f) Varying k (DBpedia)

(g)  Varying β (YAGO)
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We next report the details of our findings.

Exp-1: Eff iciency .  We repor t  the eff iciency 
of  ����_������ , compared with ��� , ����+ , and 
����_����� , and study the efficiency with ontology close-
ness by varying � . ������� is omitted, since it has unstable 
learning time and is not comparable.

Varying|E| . For ������� , fixing |� +| = 15K  , support 
threshold � = 0.1 , confidence threshold � = 0.005, k = 200 , 
we sampled five graphs from ������� , with size (number 
of edges) varied from 0.6M to 1.8M; for �������� , fixing 
|� +| = 6K  , � = 0.001 , � = 5 × 10−5 , k = 50 , we sampled 
five graphs, with size varied from 0.4M to 2.0M edges. Fig-
ure 4a, b shows that all methods take longer time over larger 
|E|, as expected. (1) Figure 4a shows that ����_������ is 
on average 3.2 (resp. 4.1) times faster than ���� + (resp. 
����_����� ) over ������� due to its approximate matching 
scheme and top-k selection strategy. (2) Although ����+ 
is faster than ����_������ over smaller graphs, we find 
that it returns few rules due to low support. Enlarging rule 
size (e.g., to 5) ����+ does not run to completion. (3) The 
cost of ��� is less sensitive due to that it samples a (prede-
fined) fixed number of paths, but it does not perform well 
in �������� (Fig. 4b). (4) ����_������ outperforms the 
other three in �������� except |E| = 0.4M (Fig. 4b), which is 
because ����_������ has an overhead to compute ������� 
and allocate sieves but too few rules can be discovered in 
small data.

Varying |� +| . For ������� , fixing |E| = 1.8M  , � = 0.1 , 
� = 0.005 , k = 200 , we varied |� +| from 3K to 15K; for 
�������� , fixing |E| = 2M , � = 0.001 , � = 5 × 10−5 , k = 50 , 
we varied � + from 1200 to 6000. As shown in Fig. 4c, 

d, while all the methods take longer time for larger |� +| , 
����_������ scales best with |� +| due to its stream selec-
tion strategy. In ������� , ����_������ achieves compara-
ble efficiency with ��� and outperforms ����_����� and 
����+ by 3.54 and 5.1 times on average, respectively. 
In �������� , ����_������ outperforms others except 
|� +| = 1200 , which is still because an overhead for small 
data with too few rules.

Varying σ. Fixing |E| = 1.8M  , |� +| = 15K  , � = 0.005 , 
k = 200 , we varied � from 0.05 to 0.25 in ������� . As shown 
in Fig. 4e, ����_����� takes longer time over smaller � , 
due to more patterns and ���� candidates need to be veri-
fied. On the other hand, ����_������ is much less sensitive 
due to that it terminates early without verifying all patterns.

Varying k. Fixing |E| = 1.8M , � = 0.1 , � = 0.005 , we var-
ied k from 200 to 1000 in ������� . Figure 4f shows that 
����_������ is more sensitive to k due to it takes longer 
time to find k best patterns for each sieve value. Although 
����_����� is less sensitive, the major bottleneck is its ver-
ification cost. In addition, we found that with larger � , less 
number of patterns are needed; thus, ����_������ takes 
less time.

Varying � . We next evaluate the impact of � to the cost of 
����� discovery. We fix |E| = 1.2M , � = 0.01 , � = 0.005 , 
b = 4 , and k = 200 for ���� , and |E| = 1.5M , � = 0.1 , 
� = 0.005 , b = 4 , and k = 200 for ������� , we varied 
� from 1 to 0.5. On the one hand, Fig. 4g, h shows that 
it takes longer time to discover ����� for smaller � for 
both ����_������ and ����_����� . This is because the 
pattern verification cost increases due to more candidates 
introduced by ����(⋅) . On the other hand, ����_������ 

Table 1   Effectiveness: average accuracy

���� �������

Model ���� ���� ��� F1 ���� ���� ��� F1

����� �.�� �.�� 0.60 �.�� �.�� �.�� 0.55 �.��

�����
R

0.73 0.40 0.75 0.50 0.70 0.43 0.72 0.52
����+ 0.71 0.44 0.76 0.51 0.69 0.50 0.85 0.58
��� 0.87 0.69 0.34 0.37 0.88 0.60 0.41 0.45
������� 0.87 0.62 0.36 0.40 0.88 0.75 0.60 0.63

�������� ���

Model ���� ���� ��� F1 ���� ���� ��� F1

����� �.�� �.�� 0.63 �.�� �.�� 0.86 �.�� �.��

�����
R

0.85 0.55 0.64 0.55 0.86 0.78 0.55 0.64
����+ 0.64 0.42 0.78 0.48 0.70 0.53 0.62 0.52
��� 0.90 0.65 0.51 0.53 0.77 0.88 0.21 0.32
������� 0.90 0.63 0.49 0.52 0.76 0.74 0.17 0.27
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improves ����_����� better over smaller � due to its early 
termination. For example, it is 2.1, 4.4 and 8.14 times faster 
than ����_����� over ������� when � is 1 (using label 
equality), 0.75 and 0.5, respectively. Compared with ���� 

( � = 1 ), ����_������ is on average five times slower when 
� = 0.75 and is on average 15 times slower when � = 0.50 
over ������� . Actually, enabling ontologies will enlarge 
training set � + , which takes longer time as verified in 

Fig. 5   Impact factors to accu-
racy

(a) (b)

(c) (d)

(f)(e)

(g) (h)
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Fig. 4c, d. However, a benefit of ����� is to build a unified 
model for multiple triple patterns r(x, y), rather than build-
ing a separate model for each r(x, y) as in ���� . In practice, 
users can select applicable � (closer to 1) to avoid including 
many similar labels.

Exp-2: Accuracy. We report the accuracy of all the models 
in Table 1.

Rule-based models. We apply the same support threshold 
� = 0.1 for ����+ and �����R . We set � = 0.005 for �����R 
and set k = 200 . We sample 20 triple patterns and report the 
average accuracy. As shown in Table 1, �����R constantly 
improves ����+ with up to 21% gain in prediction rate, 
and with comparable performance for other cases. We found 
that ����+ reports rules with high support but not neces-
sarily meaningful, while ����� capture more meaningful 
context (see Exp-3). Both models have relatively high recall 
but low precision; due to that, they have a better chance to 
cover missing facts but may introduce errors when hitting 
false facts.

Supervised models. We next compare ����� with supervised 
link prediction models. ����� achieves the highest predic-
tion rates and F1 scores. It outperforms ��� with 12% gain on 
precision and 23% gain on recall on average and outperforms 
������� with 16% gain on precision and 19% recall. Indeed, 
����� extracts useful features from ����� with both high 
significance and diversity, beyond path features.

We next evaluate the impact of factors to the model accu-
racy and study the impact of ontology closeness by varying 
� in Fig. 5.

Varying � and � . For �������� , fixing |E| = 2.0M  , 
|� +| = 135K , and k = 200 , we varied � from 0.05 to 0.25 
and compare patterns with confidence 0.02 and 0.04, respec-
tively, as shown in Fig. 5a. For ���� , fixing |E| = 1.5M , 
|� +| = 250K , and k = 200 , we varied � from 0.05 to 0.25 
and compare patterns with confidence 0.001 and 0.002, 
respectively, as shown in Fig. 5b. Both figures show that 
����� and �����R have lower prediction rates when support 
threshold (resp. confidence) is higher (resp. lower). That 
is because fewer patterns can be discovered with higher � , 
leading to more “misses” in facts, while higher confidence 
leads to stronger association of patterns and more accurate 
predictions. In general, ����� achieves higher prediction rate 
than �����R.

Var ying |� +| .  For  �������� ,  f ix ing |E| = 2.0M  , 
|� +| = 135K  , � = 0.001 , � = 5 × 10−5 , k = 200 , we vary 
|� +| from 75K to 135K as shown in Fig. 5c; for ���� , fix-
ing |E| = 1.5M , � = 0.01 , � = 0.005 , k = 200 , we vary |� +| 
from 50K to 250K as shown in Fig. 5d. Both figures show 

that ����� and �����R have higher prediction rate when 
providing more examples. Their precisions (not shown) 
follow a similar trend.

Varying k. For �������� , fixing |E| = 2.0M , � + = 135K  , 
� = 0.001 , � = 5 × 10−5 , we varied k from 50 to 250. Fig-
ure 5e shows the prediction rate first increases and then 
decreases. For rule-based model, more rules increase the 
accuracy by covering more true facts, while increasing the 
risk of hitting false facts. For supervised link prediction, the 
model will be under-fitting with few features for small k and 
will be over-fitting with too many features due to large k. We 
observe that k = 200 is a best setting for high prediction rate. 
This also explains the need for top-k discovery instead of a 
full enumeration of graph patterns.

Varying b. For �������� , fixing |E| = 2.0M , � = 0.001 , 
� = 5 × 10−5 , and k = 200 , for ���� , fixing |E| = 1.5M , 
� = 0.01 , � = 0.005 , and k = 200 , for both data, we select 
200 size 2 patterns and 200 size 3 patterns to train the mod-
els. Figure 5f verifies an interesting observation: Smaller 
patterns contribute more to recall and larger patterns con-
tribute more to precision, because smaller patterns are more 
likely to “hit” new facts, while larger patterns have stricter 
constraints for correct prediction of true fact.

Varying  � . Using the same setting as in Fig. 4g, h, we report 
the impact of � to the accuracy of ����-based models. Fig-
ure 5g and h shows that with smaller � , ����� and �����R 
achieve higher recall but retain reasonable precision. Indeed, 
smaller � allows rules to be learned from more training 
examples and cover more missing facts. As � is varied from 
1 to 0.75 (resp. 0.5), for ���� , the recall of ����� increases 
from 45% to 56% (resp. 70% ) with at most 5% (resp. 9% ) 
loss in precision; for ������� , the recall of ����� increases 
from 31% to 42% (resp. 55% ) with at most 1% (resp. 4% ) loss 
in precision. Note that for � = 1 , the results are the same 
as using ���� without ontologies, which have much lower 
recalls than ����� . This justifies the benefit of introducing 
ontological matching.

Exp-3: Case study. We perform case studies to evaluate the 
applications of �����.

Test cases. A test case consists of a triple pattern r(x, y) 
and a set of test facts that are ontologically close to r(x, y). 
According to the type information on nodes and edges, the 
triple patterns are categorized in:

(a) Functional cases refer to functional predicates (a 
“one-to-one” mapping) of relationship r between node vx 
and node vy . For a relationship “capitalOf,” two loca-
tions can only map to each other through it, for example, 
“London” is the capital of “UK”.
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(b) Pseudo-functional predicates can be “one-to-many,” 
but have high functionality (a.k.a. “usually functional”). 
For example, relationships like “graduatedFrom” 
are not necessary functional, but are functional for many 
“persons”.

(c) Inverse Pseudo-functional are those facts with 
inversed pseudo-functional predicates (“many-to-one”), like 
“almaMaterOf”.

(d) Non-Functional facts allow “many-to-many” mapping, 
such as “workFor” between “person” and “organization”.

Accuracy. We show 30 r(x, y) cases from each category and 
report their overall F1 scores in Table. 2. Non-functional 
cases are those allow “many-to-many” relations, in which 
case ��� may not hold [14]. We found that ����� performs 
well for all test cases, especially for those non-functional 
ones. Indeed, the relaxation of label equality by the ontology 
closeness in both pattern matching and the ontology-based 

��� helps improve the fact checking models in recall with-
out losing much precision (Fig. 5h, g), and the graph patterns 
of ����� mitigate the non-functional bases with enriched 
context.

Interpretability. We further illustrate three top ����� in 
Fig. 6, which contribute to highly important features in 
����� with high confidence and significance over a real-
world financial network �������� and two knowledge graphs 
������� and ��������.

(1) ���� �3 : P3(x, y) → ���������������������
(company, company) ( �������� ) states that two (anony-
mous) companies are likely to have the same name and 
registration date if they share shareholder and beneficiary, 
and one is registered and within jurisdiction in Panama, 
and the other is active in Panama. This ���� has support 
0.12 and confidence 0.0086 and is quite significant. For the 
same r(x, y), ����+ discovers a top rule as ����������(x, 

Table 2   Case study: F1 scores over 30 test cases

���� �� ���� ���� r(x, y) ����+ ��� ������� �����
R

�����

Functional 1 〈prefecture, ���������� , district〉 ( ����) 0.75 1.00 1.00 0.60 0.88
2 〈site, ���������� , district〉 ( ����) 1.00 1.00 1.00 1.00 1.00
3 〈organization, ������������� , place〉 ( �������) 0.67 1.00 1.00 0.67 1.00
4 〈sportPlayer, ��������� , sportPlayer〉 ( �������) 1.00 1.00 1.00 0.90 1.00
5 〈position, ��������� , jurisdiction〉 ( ��������) 0.74 1.00 1.00 0.77 1.00
6 〈wikipedia, ��������� , family〉 ( ��������) 0.00 1.00 1.00 0.17 1.00
7 〈railStation, ����������� , village〉 ( ��������) 0.67 0.77 0.93 0.12 0.88

Pseudo-Functional 8 〈team, ������� , song〉 ( ����) 0.00 0.00 0.00 0.79 �.��

9 〈district, �������������� , conflict〉 ( ����) 0.52 0.60 0.92 0.96 �.��

10 〈event, ������������ , aircraftType〉 ( �������) 1.00 0.00 0.86 0.87 0.94
11 〈place, �������������� , politician〉 ( �������) 0.35 0.90 0.95 0.83 �.��

12 〈route, ���������� , city〉 ( �������) 0.57 0.67 1.00 0.64 0.93
13 〈music, �������������� , book〉 ( �������) 0.45 0.93 0.93 0.84 0.88
14 〈film, ���������� , book〉 ( ��������) 0.35 1.00 1.00 0.31 0.83

Pseudo-Functional (inverse) 15 〈person, ������������� , institute〉 ( ����) 0.54 0.09 0.47 0.76 �.��

16 〈person, ������� , school〉 ( ����) 0.52 0.19 0.59 0.51 �.��

17 〈scientist, ����������� , city〉 ( ����) 0.37 0.14 0.77 0.30 �.��

18 〈event, ��������������� , event〉 ( �������) 1.00 1.00 0.33 0.57 0.93
19 〈music, �������������� , music〉 ( �������) 0.49 1.00 0.96 0.64 1.00
20 〈article, ���� , genre〉 ( ��������) 0.83 0.00 0.75 0.24 �.��

21 〈MLPaper, ����������� , journal〉 ( ���) 0.24 0.11 0.00 0.46 �.��

Non-Functional 22 〈airport, ������������� , airport〉 ( ����) 0.54 0.35 0.00 0.76 �.��

23 〈country, ��������� , country〉 ( ����) 0.35 0.00 0.82 0.74 �.��

24 〈politician, ��������� , politician〉 ( �������) 0.34 0.55 0.67 0.57 0.75
25 〈athlete, ��������� , school〉 ( �������) 0.51 0.00 0.84 0.80 �.��

26 〈film, ������� , book〉 ( ��������) 0.32 0.29 0.36 0.45 �.��

27 〈drawing, ��������� , human〉 ( ��������) 0.80 0.06 0.11 0.81 �.��

28 〈AIPaper, ��������� , DBPaper〉 ( ���) 0.62 0.51 0.48 0.49 �.��

29 〈DMPaper, ��������� , AIPaper〉 ( ���) 0.51 0.38 0.43 0.54 �.��

30 〈author, �������������� , institute〉 ( ���) 0.70 0.37 0.51 0.50 �.��
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Jurisdiction_in_Panama) ∧ ����������(y, Jurisdiction_in_
Panama) and implies x and y has the same name and registra-
tion date. This rule has a low prediction rate.

(2) ���� �4 : P4(x, y) → ��������(TVShow,  film) 
( ������� ) states that a TV show and a film have relevant 
content if they have the common language, authors, and pro-
ducers. This ���� has support 0.15 and a high confidence 
and significant score. Within bound 3, ����+ reports a top 
rule as ��������(x, z)∧ ��������(y, z) → ��������(x, y) 
, which has low accuracy. This rule also identifies relevant 
relationships between BBC programs (e.g., “BBC News at 
Six”) and other programs that are relevant to “TVShow” 
and “Films” respectively, enabled by ontological matching. 
These facts cannot be captured by ���� or ����.

(3) ���� �5 : P5(x, y) → ����������(writer, philoso-
pher) ( �������� ) states that a writer vx influences a philoso-
pher vy , if vx influences a philosopher p and a scholar s, 
who both influences a philosopher vy . This rule identifies 
true facts such as 〈Bertrand Russel, ���������� , Ludwig 
Wittgenstein〉, the influence between a logician and a phi-
losopher, enabled by ontological matching following O2.

6 � Conclusion

We have introduced ����� , a class of rules that incorpo-
rate graph patterns to predict facts in knowledge graphs. We 
developed an ontology-aware rule discovery algorithm to find 
useful ����� for observed true and false facts, which selects 
the top discriminant graph patterns generated in a stream. We 

have shown that ����� can be readily applied as rule models 
or provide useful instance-level features in supervised link 
prediction. The benefit of enabling ontologies is to build a 
unified model for multiple triple patterns. Our experimental 
study has verified the effectiveness and efficiency of ����
-based techniques. We have evaluated ����� with real-world 
graphs and pattern models. One future topic is to extend 
���� techniques for entity resolution, social recommen-
dation, anomaly detection, and data imputation. A second 
direction is to extend ���� model to cope with multi-label 
knowledge graphs or property graphs. A third future work is 
to develop scalable �����-based models and methods with 
parallel graph mining and distributed rule learning.
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