
Vol.:(0123456789)1 3

Data Science and Engineering
https://doi.org/10.1007/s41019-018-0082-4

Fact Checking in Knowledge Graphs with Ontological Subgraph
Patterns

Peng Lin1  · Qi Song1 · Yinghui Wu1

Received: 1 August 2018 / Revised: 19 October 2018 / Accepted: 10 November 2018
© The Author(s) 2018

Abstract
Given a knowledge graph and a fact (a triple statement), fact checking is to decide whether the fact belongs to the missing part of
the graph. Facts in real-world knowledge bases are typically interpreted by both topological and semantic context that is not fully
exploited by existing methods. This paper introduces a novel fact checking method that explicitly exploits discriminant subgraph
structures. Our method discovers discriminant subgraphs associated with a set of training facts, characterized by a class of graph
fact checking rules. These rules incorporate expressive subgraph patterns to jointly describe both topological and ontological
constraints. (1) We extend graph fact checking rules ( ���� ) to a class of ontological graph fact checking rules ( ����� ). �����
generalize ���� by incorporating both topological constraints and ontological closeness to best distinguish between true and
false fact statements. We provide quality measures to characterize useful patterns that are both discriminant and diversified. (2)
Despite the increased expressiveness, we show that it is feasible to discover ����� in large graphs with ontologies, by developing
a supervised pattern discovery algorithm. To find useful ����� as early as possible, it generates subgraph patterns relevant to
training facts and dynamically selects patterns from a pattern stream with a small update cost per pattern. We verify that �����
can be used as rules and provide useful features for other statistical learning-based fact checking models. Using real-world
knowledge bases, we experimentally verify the efficiency and the effectiveness of ����-based techniques for fact checking.

Keywords  Fact checking · Ontology · Supervised graph pattern mining · Knowledge graph · Supervised link prediction

1  Introduction

Knowledge graphs have been utilized to support emerging
applications, for example, Web search [8], recommenda-
tion [33], and decision making [17]. Real-life knowledge
bases often contain two components: (1) a knowledge graph
G that consists of a set of facts, where each fact is a triple
statement 〈 vx , �, vy 〉, that contains a subject entity vx , an
object entity vy , and a predicate r that encodes the relation-
ship between vx and vy ; and (2) an external ontology O [7,
35, 46] to support organizing meta-data such as types and
labels. An ontology is typically a graph that contains a set of

concepts and their relationships in terms of semantic close-
ness, such as ���������� , �������� , ������� [2, 46, 48].
Among the cornerstones of knowledge base management is
the task of fact checking. Given a knowledge graph G and a
fact t, it is to decide whether t belongs to the missing part of
G. The verified facts can be used to (1) directly refine incom-
plete knowledge bases [3, 8, 23, 32], (2) provide cleaned
evidence for error detection in dirty knowledge bases [4, 16,
27, 44], (3) improve the quality of knowledge search [31,
34], and (4) integrate multiple knowledge bases [8, 10].

Facts in knowledge graphs are often associated with non-
trivial regularities that are jointly described by imposing
both topological constraints and ontological closeness. Such
regularities can be captured by subgraphs associated with
the facts. How to exploit these associated subgraphs and
ontologies to effectively support fact checking in knowledge
graphs? Consider the following example.

Example 1.  The graph G1 in Fig. 1 illustrates a fraction of
DBpedia [23] that depicts the facts about philosophers (e.g.,
“Plato”). The knowledge base is associated with an ontology

 *	 Peng Lin
	 peng.lin@wsu.edu

	 Qi Song
	 qi.song@wsu.edu

	 Yinghui Wu
	 yinghui.wu@wsu.edu

1	 School of Electrical Engineering and Computer Science,
Washington State University, Pullman, WA, USA

http://orcid.org/0000-0002-6347-1673
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-018-0082-4&domain=pdf

	 P. Lin et al.

1 3

O1 , which depicts semantic relationships among the concepts
(e.g., “philosopher”) that are referred by the entity type in
G1 . A user is interested in finding “whether a logician (‘Cic-
ero’) or a theologian (‘St. Augustine’) as vx is influenced by
a philosopher (‘Plato’) as vy”.

It is observed that graph patterns help explain the exist-
ence of certain entities and relationships in knowledge
bases [26]. Consider a rule represented by a graph pattern
P1 associated with philosophers, which states that “if a phi-
losopher vxgave one or more speeches that cited a book of
vywith the same topic, then vxis likely to be influenced by
vy ”. One may want to apply this rule to verify whether Cic-
ero is influenced by Plato. Nevertheless, such rule cannot be
directly applied, as Cicero is not directly labeled by “philoso-
pher”. On the other hand, as “logician” (resp. “masterpiece”)
is a type semantically close to the concept “philosopher”
(resp. “speech”) in the philosopher ontology O1 , “Cicero”
and “Plato” should be considered as matches of P1 , and the
triple 〈Cicero, ������������ , Plato〉 should be true in G1 .
Similarly, another fact 〈St. Augustine, ������������ , Plato〉
should be identified as true facts, given that (a) “theologian”
and “writtenWork” are semantically close to “philosopher”
and “book” in O1 , respectively, and (b) there is a subgraph of
G1 that contains “St. Augustine” and “Plato,” and matches P1.

Consider another example, a business knowledge base G2
from a fraction of a real-world offshore activity network [19]
in Fig. 1. To find whether an active broker (close to active
intermediary) � is likely to serve a company � in transi-
tion, a pattern P2 that explains such an action may identify G2
by stating that “ A is likely an intermediary of C if it served for
a dissolved (closed) company D , which has the same share-
holder O and one or more service providers with C”.

Subgraph patterns with “weaker” constraints may not
explain facts well. Consider a graph pattern P′

1
 obtained

by removing the edge ����� (speech, book) from P1 .
Although “Cicero” and “Plato” match P′

1
 , a false fact

〈Cicero, ������������ , John Stuart Mill〉 also matches

P′
1
 because “John Stuart Mill” also has a book belong-

ing to the “Ancient Philosophy” (not shown). Thus, P′
1

alone does not distinguish between true and false facts for
������������ (philosopher, philosopher) well. However,
as “Cicero” does not have a speech citing a book of “John
Stuart Mill,” the fact is identified as false by P1 , since it
does not satisfy the constraints.

These graph patterns can be easily interpreted as rules,
and the matches of the graph patterns readily provide
instance-level evidence to “explain” the facts. These
matches also indicate more accurate predictive models
for various facts. We ask the following questions: How
to jointly characterize and discover useful patterns with
subgraphs and ontologies? and How to use these patterns
to support fact checking in large knowledge graphs?

Contribution. We propose models and algorithms that
explicitly incorporate discriminant subgraphs and ontolo-
gies to support fact checking in knowledge graphs.

(1) We extend graph fact checking rules ( ����) [26] to
a class of ontological graph fact checking rules ( ����� )
(Sect. 2). ����� incorporate discriminant graph patterns
as the antecedent and generalized triple patterns as the
consequent and build a unified model to check multiple
types of facts by graph pattern matching with ontology
closeness. We adopt computationally efficient pattern
models and closeness functions to ensure tractable fact
checking via �����.

We develop statistical measures (e.g., support, confi-
dence, significance, and diversity) to characterize useful
����� (Sect. 3). Based on these measures, we formulate
the top-k ���� discovery problem to mine useful �����
for fact checking.

(2) We develop a feasible supervised discovery algorithm
to compute ����� over a set of training facts (Sect. 4). In
contrast to conventional pattern mining, the algorithm solves

Fig. 1   Facts and their associated
subgraphs. Subgraphs suggest
the existence of facts by jointly
describing topology and seman-
tic constraints. These subgraphs
can be identified by approxi-
mate graph pattern matching via
associated ontologies

Fact Checking in Knowledge Graphs with Ontological Subgraph Patterns﻿	

1 3

a submodular optimization problem with provable optimal-
ity guarantees, by a single scan of a stream of patterns, and
incurs a small cost for each pattern.

(3) To evaluate the applications of ����� , we apply
����� to enhance rule-based and learning-based models
to the fact checking task, by developing two such classifiers.
The first model directly uses ����� as rules. The second
model extracts instance-level features from the matches of
patterns induced by ����� to learn a classifier (Sect. 4.2).

(4) Using real-world knowledge bases, we experimentally
verify the efficiency of ����-based techniques (Sect. 5).
We found that the discovery of ����� is feasible over large
graphs. ����-based fact checking also achieves high accu-
racy and outperforms its counterparts using Horn clause
rules and path-based learning. We also show that the models
are highly interpretable by providing case studies.

Our work nontrivially extends graph fact checking rules
( ���) [26] with the following new contributions that are
not addressed by ��� techniques: (1) new rule models that
incorporate semantic closeness in ontology beyond label
equality, (2) improved rule discovery algorithms that incor-
porate ontological subgraph matching and ontological pat-
tern growth strategy, (3) a unified model for multiple types
of facts with semantic closeness, which is unlike ���� that
need to build a separate model for each single triple pattern,
and (4) experimental studies that verify the effectiveness of
adding ontologies to the ��� models.

Related work. We categorize the related work as follows.

Fact checking. Fact checking has been studied for unstruc-
tured data [13, 36] and structured (relational) data [18, 45],
mostly relying on text analysis and crowd sourcing. Auto-
matic fact checking in knowledge graphs is not addressed in
these work. Beyond relational data, the following methods
have been studied to predict triples in graphs.

(1) Rule-based models extract association rules to pre-
dict facts. ���� (or its improved version ����+ ) discovers
rules with conjunctive Horn clauses [14, 15] for knowledge
base enhancement. Beyond Horn rules, GPARs [11] discover
association rules in the form of Q ⇒ p , with a subgraph pat-
tern Q and a single edge p. It recommends users via co-
occurred frequent subgraphs.

(2) Supervised link prediction has been applied to train
predictive models with latent features extracted from enti-
ties [8, 22]. Recent works make use of path features [5, 6,
16, 37, 42]. The paths involving targeted entities are sam-
pled from 1-hop neighbors [6] or via random walks [16], or
constrained to be shortest paths [5]. Discriminant paths with
the same ontology are grouped to generate training examples
in [37].

Rule-based models are easy to interpret but usually cover
only a subset of useful patterns [31]. It is also expensive to

discover useful rules (e.g., via subgraph isomorphism) [11].
On the other hand, latent feature models are more difficult
to be interpreted [31] compared with rule models [15]. Our
work aims to balance the interpretability and model con-
struction cost. (a) In contrast to ���� [15], we use more
expressive rules enhanced with graph patterns to express
both constant and topological context of facts. Unlike [11],
we use approximate pattern matching for ����� instead of
subgraph isomorphism, since the latter may produce redun-
dant examples and is computationally hard in general. (b)
����� can induce useful and discriminant features from
patterns and subgraphs, beyond path features [6, 16, 42].
(c) ����� can be used as a stand-alone rule-based method.
They also provide context-dependent features to support
supervised link prediction to learn highly interpretable mod-
els. These are not addressed in [11, 15].

Ontological graph pattern matching. Ontology-based pat-
tern matching has been proposed to replace the label equal-
ity with grouping semantically related labels [24, 46]. Wu
et al. [46] revises subgraph isomorphism with a quantitative
metric which measures the similarity between the query and
its matches in the graph. We adopt ontology-based matching
introduced in [46] and the closeness function between con-
cepts (labels) to find ����� with semantically related labels.

Graph pattern mining. Frequent pattern mining defined by
subgraph isomorphism has been studied for a single graph.
GRAMI [9] discovers frequent subgraph patterns without
edge labels. Parallel algorithms are also developed for asso-
ciation rules with subgraph patterns [11]. In contrast, (1) we
adopt approximate graph pattern matching for feasible fact
checking, rather than subgraph isomorphism as in [9, 11].
(2) We develop a more feasible stream mining algorithm
with optimality guarantees on rule quality, which incurs
a small cost to process each pattern. (3) Supervised graph
pattern mining over observed ground truth is not discussed
in [9, 11]. In contrast, we develop supervised pattern discov-
ery algorithms that compute discriminant patterns that best
distinguish between the observed true and false facts. None
of these works discuss supervised graph pattern discovery
and their applications for fact checking.

Graph dependency. Data dependencies have been extended
to capture inconsistencies in graph data. Functional depend-
encies for graphs ( ����) [12] enforce topological and value
constraints by incorporating graph patterns with variables
and subgraph isomorphism. Ontology functional dependen-
cies (OFD) on relational data have been proposed to capture
synonyms and is-a relationships defined in an ontology [2].
These hard constraints are useful for detecting and cleaning
data inconsistencies for follow-up fact checking tasks [31].
On the other hand, they are often violated by incomplete

	 P. Lin et al.

1 3

knowledge graphs [31] and thus can be overkill for discover-
ing useful substructures when applied to fact checking. We
focus on “soft rules” to infer new facts toward data comple-
tion rather than identifying errors with hard constraints [34].
While hard rules are designed to enforce value constraints on
node attribute values to capture data inconsistencies, �����
can be viewed as a class of association rules that incorpo-
rates approximate graph pattern matching with ontology
closeness functions to identify missing facts. The semantics
and applications of ����� are quite different from their
counterparts in these data dependencies.

2 � Fact Checking with Graph Patterns

We review the notions of knowledge graphs and fact check-
ing. We then introduce a class of rules that incorporate graph
patterns and ontologies for fact checking.

2.1 � Graphs, Ontologies, and Patterns

Knowledge graphs. A knowledge graph [8] is a directed
graph G = (V ,E, L) , which consists of a finite set of nodes
V, a set of edges E ⊆ V × V  . Each node v ∈ V (resp. edge
e ∈ E ) carries a label L(v) (resp. L(e)) that encodes the con-
tent of v (resp. e) such as types, names, or property values.

Ontologies. An ontology is a directed graph O = (Vo,Eo) ,
where Vo is a set of concept labels and Eo ⊆ Vo × Vo is a set
of semantic relations among the concept nodes. In practice,
an edge (l, l�) ∈ Eo may encode three types of relations [21],
including: (a) equivalence states l and l′ are semantically
equivalent, thereby representing “refersTo” or “knownAs”;
(b) hyponyms states that l is a kind of l′ , such as “isA” or
“subclassOf” that enforces a preorder over Vo ; and (c)
descriptive states that l is described by another l′ in terms
of, for example, “association,” “partOf” or “similarTo”. In
practice, an ontology may encode taxonomies, thesauri, or
RDF schemas.

Label closeness function Given an ontology O and a concept
label l, a label closeness function ����(⋅) computes a set
of labels close to l, i.e., ����(l,O) = {l�|����(l, l�) ≤ 1 − �} ,
where (1) ����(⋅) ∶ Vo × Vo → [0, 1] computes a relevant score
between l and l′ , and (2) � (resp. (1 − �) ) is a similarity (resp.
distance) bound. One may set ����(l, l�) as the normalized
sum of the edge weights along a shortest (undirected) path
between l to l′ in O [21, 46]. For equivalence, hyponym,
descriptive edges modeled in O, tunable weights w1 , w2, and
w3 can be assigned respectively, to differentiate equivalence,
inheritance, and association properties [21].

Example 2.  Consider the knowledge graph G1 in Fig. 1.
A fact 〈 vx , � , vy 〉 = 〈Cicero, ������������ , Plato〉
is encoded by an edge in G with label “ ��� ��������� ”
between the subject node vx and the object node vy . The
label of vx encodes its name “Cicero” and carries a type
x = “philosopher”; similarly for vy with name “Plato” and
type y = “philosopher”. By setting w1 = 0.0 , w2 = 0.1 ,
and w3 = 0.4 , the corresponding ontology O1 of G1 (Fig. 1)
suggests that (1) ����(theologian, philosopher) = 0.4 , ����
(theologian, logician) = 0.4 , and ����(philosopher, logician)
= 0.1 , and thus these concepts are close to each other if the
threshold � = 0.6 ; (2) ����(speech, book) = 0.3 , ����(speech ,
writternWork) = 0.2 , and ����(book,writternWork) = 0.1 , and
thus these concepts are close to each other if the threshold
� = 0.7.

Fact checking in knowledge graphs. Given a knowledge
graph G = (V, E, L) and a new fact t = 〈 vx , � , vy 〉 , where
vx and vy are in G, and t ∉ E , the task of fact checking is to
compute a model M to decide whether the relation r exists
between vx and vy [31]. This task can be represented by a
binary query in the form of 〈 vx , �? , vy 〉 , where the model M
outputs “true” or “false” for the query.

We study how subgraphs and ontologies can be jointly
explored to support effective fact checking for knowledge
graphs. To characterize useful subgraphs and concept labels,
we introduce a class of ontology-based subgraph patterns,
which extends its counterpart in graph fact checking rules
( ����) [26] with ontology closeness.

Subgraph patterns. A subgraph pattern P(x, y) =
(V

P
,E

P
, L

P
) is a directed graph that contains a set of pattern

nodes VP and pattern edges EP , respectively. Each pattern
node up ∈ VP (resp. edge ep ∈ EP ) has a label LP(up) (resp.
LP(ep) ). Moreover, it contains two designated anchored
nodes ux and uy in VP of types x and y, respectively. Spe-
cifically, when it contains a single pattern edge with label
r between ux and uy , P is called a triple pattern, denoted as
r(x, y).

We next extend the approximate pattern matching [26]
with ontologies.

Ontological pattern matching. Given a graph G, a
pattern P(x, y), and a function ����(⋅) , for a pattern
node vP of P(x, y), a node v in G is a candidate of vP if
L(v) ∈ ����(LP(vP),O) . A candidate of a pattern edge eP =
(vP, v

�
P
) in G is an edge e = (v, v�) such that (a) v (resp. v′ ) is

a candidate of vP (resp. v′
P
 ), and (b) L(e) ∈ ����(LP(eP),O).

Match relation. Given P(x, y), G, O and function ����(⋅) ,
a pair of nodes (vx, vy) match P(x, y), or P covers the pair
(vx, vy) , if (1) there exists a matching relation R ⊆ VP × V

Fact Checking in Knowledge Graphs with Ontological Subgraph Patterns﻿	

1 3

such that for each pair (u, v) ∈ R , (a) v is a candidate of
u (verified by the ontology closeness function ����(⋅) ),
(b) for every edge eP = (u, u�) ∈ EP , there exists a can-
didate e′ = (v, v�) ∈ E and (u�, v�) ∈ R ; (c) for every edge
e�
P
= (u�, u) ∈ EP , there exists a candidate e′′ = (v�, v) ∈ E

and (u�, v�) ∈ R ; and (2) (ux, vx) ∈ R and (uy, vy) ∈ R , i.e., vx
(resp. vy ) is a match of ux (resp. uy ), respectively.

Example 3.  Consider G1 and its associated ontology O1 in
Fig. 1. Given the label “philosopher,” a set of close labels
����(philosopher,O1) may include { philosopher, logi-
cian, theologian} . Similarly, ����(speech,O1) may include
{speech, writtenWork, masterpiece} , and ����(book,O1) may
contain {writtenWork, book}.

Remarks. As observed in [26, 28, 39, 40], subgraph patterns
defined by, for example, subgraph isomorphism may be an
overkill in capturing meaningful patterns and is computa-
tionally expensive (NP-hard). Moreover, it generates (expo-
nentially) many isomorphic subgraphs and thus introduces
redundant features for model learning [26]. In contrast, it
is in (|VP|(|VP| + |V|)(|EP| + |E|)) time to find whether a
fact is covered by an approximate pattern [26]. The tracta-
bility carries over to the validation of ����� (Sect. 4). To
ensure feasible fact checking in large knowledge graphs and
ontologies, we shall consider ontological pattern matching
to balance the expressiveness and computational cost of our
rule model.

2.2 � Ontological Graph Fact Checking Rules

We now introduce our rule model that incorporates graph
patterns and ontologies.

Rule model. An ontological graph fact checking rule
(denoted as ���� ) is in the form of � ∶ P(x, y) → r(x, y) ,
where (1) P(x, y) and r(x, y) are two graph patterns carrying
the same pair of anchored nodes (ux, uy) , and (2) r(x, y) is a
triple pattern and is not in P(x, y).

Semantics. Given a knowledge graph G, an ontology O, and
a closeness function ����(⋅) , an ���� � ∶ P(x, y) → r(x, y)
states that “a fact 〈 vx , � , vy 〉 holds between vx and vy in G, if
(vx, vy) is covered by P in terms of O and ����(⋅).”

Example 4.  Consider the patterns and graphs in Fig. 1. To
verify the influence between two philosophers, an ����
is �1 ∶ P1(x, y) → ������������(x, y). Pattern P1 has two
anchored nodes x and y, both with type philosopher,
and covers the pair (������ , �����) in G1 . To verify the
service between a pair of matched entities (�, �) , another
���� is �2 ∶ P2(x, y) → ��������������(x, y). Note that

with subgraph isomorphism, P1 induces two subgraphs of
G1 that only differ by entities with label speech and mas-
terpiece. It is impractical for users to inspect such highly
overlapped subgraphs with subgraph isomorphism.

Remarks. We compare ����� with two models below.
(1) Horn rules are adopted by ����+ [14], in the form
of

⋀
Bi → r(x, y) , where each Bi is an atom (fact) carry-

ing variables. It mines only closed (each variable appears
at least twice) and connected (atoms transitively share
variables/entities to all others) rules. We allow general
approximate graph patterns in ����� to mitigate miss-
ing data and capture richer context features for supervised
models (Sect. 4). (2) The association rules with graph
patterns [11] have similar syntax with ����� but adopt
strict subgraph isomorphism for social recommendation.
In contrast, we define ����� with semantics and quality
measures (Sect. 3) specified for observed true and false
facts to support fact checking. (3) The ��� model [26] is
a special case of ����� in which ����(⋅) enforces label
equality ( � = 1).

3 � Supervised ���� Discovery

To characterize useful ����� , we introduce a set of met-
rics that jointly measure pattern significance and rule
models, which extend their counterparts from established
rule models [15] and discriminant patterns [47], and are
specialized for a set of training facts. We then formalize
the supervised ���� discovery problem.

Statistical measures. Our measures are defined over a
knowledge graph G, an ontology O (with function ����(⋅) ),
and a set of training facts �  . The training facts � consists
of a set of true facts � + in G, and a set of false facts � −
that are known not in G, respectively. Extending the sil-
ver standard in knowledge base completion [34], (1) � +
can be usually sampled from manually cleaned knowledge
bases [29]; and (2) � − are populated following the partial
closed-world assumption (see “Confidence”).

We use the following notations. Given an ����
� ∶ P(x, y) → r(x, y) , a graph G, facts � + and � − , (1) P(� +)
(resp. P(� −) ) refers to the set of training facts in � + (resp.
� − ) that are covered by P(x, y) in � + (resp. � − ) in terms
of O and ����(⋅) . P(�) is defined as P(� +) ∪ P(� −) , i.e.,
all the facts in � covered by P. (2) r(� +) , r(� −) , and r(�)
are defined similarly.

	 P. Lin et al.

1 3

Support and confidence. The support of an ����
� ∶ P(x, y) → r(x, y) , denoted by ����(�,G,�) (or simply
����(�) ), is defined as

Intuitively, the support is the fraction of the true facts that
are instances of r(x, y), and those also satisfy the constraints
of the subgraph pattern P(x, y) over the ontology O and the
closeness function ����(⋅) . It extends the head coverage, a
practical version for rule support [15] to address triple pat-
terns r(x, y) that has not many matches due to the incom-
pleteness of knowledge bases.

Given two patterns P1(x, y) and P2(x, y) , we say P2(x, y)
refines P1(x, y) (denoted by P1(x, y) ⪯ P2(x, y) , if P1 is a sub-
graph of P2 and they pertain to the same pair of anchored
nodes (ux, uy) . We show that the support of ����� pre-
serves anti-monotonicity in terms of pattern refinement.

Lemma 1.  For graph G , given any two �����
�1 ∶ P1(x, y) → r(x, y) and �2 ∶ P2(x, y) → r(x, y) , i f
P1(x, y) ⪯ P2(x, y) , ����(�2) ≤ ����(�1).

Proof sketch.  It suffices to show that any pair (vx2 , vy2) cov-
ered by P2 in G is also covered by P1(x, y) . Assume there
exists a pair (vx2 , vy2) covered by P2 but not by P1 , and assume
w.l.o.g. vx2 does not match the anchored node ux in P1 . Then,
there exists either (a) an edge (ux, u) (or (u, ux) ) in P1 such
that no edge (vx2 , v) (or (v, vx2) ) is a match, or (b) a node u as
an ancestor or a descendant of ux in P1 , such that no ances-
tor or descendant of vx2 in G is a match. As P2 refines P1 ,
both (a) and (b) lead to that vx2 is not covered by P2 , which
contradicts the definition of approximate patterns. 	� □

Extending partial closed-world assumption. Following rule
discovery in incomplete knowledge base [15], we extend par-
tial closed-world assumption ( ��� ) to characterize the con-
fidence of ����� . Given a triple pattern r(x, y) and a true
instance 〈 vx , � , vy 〉 ∈ r(� +) , an ontology-based ��� assumes
that a missing instance 〈 vx , � , v′

y
 〉 of r(x, y) is a false fact if

L(v�
y
) ∉ ����(L(vy),O) . In other words, for a given entity vx , it

assumes that r(� +) contains all the true facts about vx that per-
tain to specific r. Given the ontology and the function ����(⋅)
that tolerates concept label dissimilarity, it will identify a fact
as false only when it claims a fact that connects vx and v′

y
 via

r, and v′
y
 is not ontologically close to any known entity that is

connected to vx via r. This necessarily extends the conventional
��� (where ����(⋅) simply enforces label equality, i.e., � = 1 )
to reduce the impact of facts that may not be counted as “false”
due to the true facts that are ontologically close to them.

����(�) =
|P(� +) ∩ r(� +)|

|r(� +)|

We define a normalizer set P(� +)N , which contains all the
pairs (vx, vy) from P(� +) that have at least a false counter-
part under the ontology-based ��� . The confidence of � in
G, denoted as ���� (�,G,�) (or simply ���� (�) ), is defined as

The confidence measures the probability that an ���� holds
over the entity pairs that satisfy P(x, y), normalized by the
facts that are assumed to be false under ��� . We follow the
ontology-based ��� to construct false facts in our experi-
mental study.

Significance. We next quantify how significant an ���� is in
“distinguishing” between the true and false facts, by extending
the G-test score [47]. This test verifies the null hypothesis of
whether the number of true facts “covered” by P(x, y) fits to
the distribution in the false facts. If not, P(x, y) is considered to
be significant. Specifically, the score (denoted as ���(�, p, n) ,
or simply ���(�) ) is defined as

where p (resp. n) is the frequency of the facts covered by
pattern P of � in � + (resp. � − ), i.e., p =

|P(�+)|
|�+| (resp.

n =
|P(�−)|
|�−|  ). As ���(�) is not anti-monotonic, a common prac-

tice is to use a “rounded up” score to find significant pat-
terns [47]. We adopt an upper bound of ���(�) , denoted as
̂���(𝜑, p, n) (or ̂���(𝜑) for simplicity), which is defined as
tanh(max{���(�, p, �), ���(�, �, n)}) , where � > 0 is a small
constant (to prevent the case that ̂���(𝜑) = ∞ ), and ̂��� is
normalized to [0, 1] by the hyperbolic function tanh(⋅) . We
show the following results.

Lemma 2.  Given graph G, for any two ����� �1 ∶ P1(x, y) →
r(x, y) and �2 ∶ P2(x, y) → r(x, y) , ̂���(𝜑2) ≤

̂���(𝜑1) if
�1 ⪯ �2.

Proof.  As ̂���(𝜑) = tanh(max{���(𝜑, p, 𝛿), ���(𝜑, 𝛿, n)}) , it
suffices to show that both ���(�, p, �) and ���(�, �, n) are anti-
monotonic in terms of rule refinement.

(1) As ���(�, p, �) = 2|� +|(p ln p

�
+ (1 − p) ln

1−p

1−�
) , the

derivative w.r.t. p is

Also, as ���(�, �, n) = 2|� +|(� ln �

n
+ (1 − �) ln

1−�

1−n
) , the

derivative w.r.t. n is

����(�) =
|P(� +) ∩ r(� +)|

|P(� +)N|

���(�) = 2|� +|
(
p ln

p

n
+ (1 − p) ln

1 − p

1 − n

)

���
�
p
(�, p, �) = 2|� +|

(
ln

p

1 − p
− ln

�

1 − �

)

���
�
n
(�, �, n) = 2|� +|

(
1 − �

1 − n
−

�

n

)
= 2|� +|

(
n − �

n(1 − n)

)

Fact Checking in Knowledge Graphs with Ontological Subgraph Patterns﻿	

1 3

W h e n � ≤ min{p, n} , b o t h ���
�
p
(�, p, �) ≥ 0 a n d

���
�
n
(�, �, n) ≥ 0 . Hence, both ���(�, p, �) and ���(�, �, n) are

monotonic w.r.t. p and n, respectively.

(2) Given Lemma 1, we have p2 ≤ p1 and n2 ≤ n1
i f �1 ⪯ �2  . Then, ���(�2, p2, �) ≤ ���(�1, p1, �) and
���(�2, �, n2) ≤ ���(�1, �, n1) , thus

and therefore ̂���(𝜑2) ⪯
̂���(𝜑1) . This completes the proof of

Lemma 2. 	� □

Redundancy-aware selection. In practice, one wants to find
����� with both high significance and low redundancy.
Indeed, a set of ����� can be less useful if they “cover” the
same set of true facts in � + . We introduce a bi-criteria func-
tion that favors significant ����� that cover more diversified
true facts. Given a set of �����  , when the set of true facts
� + is known, the coverage score of  , denoted as ���() , is
defined as

The first term, defined as ���() =
�∑

𝜑∈
̂���(𝜑) , aggre-

gates the total significance of ����� in  . The second term
is defined as

where �t() refers to the ����� in  that cover a true fact
t ∈ � + . ���() quantifies the diversity of  and follows a
reward function [25]. Intuitively, it rewards the diversity in
that there is more benefit in selecting an ���� that covers
new facts, which are not covered by other ����� in  yet.
Both terms are normalized to (0,

√��].
The coverage score favors ����� that cover more distinct

true facts with more discriminant patterns. We next show
that ���(⋅) is well defined in terms of diminishing returns.
That is, adding a new ���� � to a set  improves its sig-
nificance and coverage at least as much as adding it to any
superset of  (diminishing gain to  ). This also verifies that
���(⋅) employs submodularity [30], a property widely used
to justify goodness measures for set mining. Define the mar-
ginal gain ��(�,) of an ���� � to a set  ( � ∉  ) as
���( ∪ {�})-���() . We have the following result.

Lemma 3.  The function ���(⋅) is a monotone submodular
function for ����� that is for any two sets 1 and 2 , (1) if

max{���(�2, p2, �), ���(�2, �, n2)} ≤ max{���(�1, p1, �), ���(�1, �, n1)}

���() = ���() + ���()

���() =

⎛⎜⎜⎝
�
t∈�+

� �
�∈�t()

����(�)

⎞⎟⎟⎠
��� +�

1 ⊆ 2 , then ���(1) ≤ ���(2) , and (2) if 1 ⊆ 2 and for
any ���� � ∉ 2 , ��(�,2) ≤ ��(�,1).

Proof.  We show that both parts pertaining to ���() , i.e.,
���() and ���() , are monotone submodular functions w.r.t.
 , and therefore ���() is a monotone submodular function
w.r.t. .

(1) We show that both ���() and ���() are monotone
functions w.r.t.  . Each term ���(�) is positive, and the sum ∑

�∈1
���(�) ≤

∑
�∈2

���(�) , since every � in 1 is also in
2 for any two sets 1 ⊆ 2 of ����� . Hence, ���() is a
monotone function w.r.t. the set .

We denote the term
�∑

�∈�t()
����(�) in ���() as

Tt() . For each term Tt() in ���() , similarly, ����(�) is
positive, and we have

∑
�∈�t(1)

����(�) ≤
∑

�∈�t(2)
����(�) ,

since every � in �t(1) that covers t is also in �t(2) for any
two sets 1 ⊆ 2 of ����� . Hence, each term Tt() in ���()
is a monotone function w.r.t.  , and thus ���() is a mono-
tone function w.r.t. .

(2) Next, we show that both ���() and ���() are sub-
modular functions w.r.t.  . For any ���� �� ∉  , the
marginal gain for ���() is: ���( ∪ {��}) − ���() =
(
∑

�∈∪{��} ���(�))
1

2 − ���() = (���2() + ���(��))
1

2 − ���()
= ���(��)

/
((���2() + ���(��))

1

2 + ���()) , which is an
anti-monotonic function w.r.t. ���() . As ���() is mono-
tonic w.r.t.   , for any two sets 1 ⊆ 2 and �� ∉ 2 ,
���(2 ∪ {��}) − ���(2) ≤ ���(1 ∪ {��}) − ���(1) . Hence,
���() is submodular w.r.t. .

Similarly, for any ���� �� ∉   , the mar-
ginal gain of ���(⋅) for each term Tt() i s :
Tt( ∪ {��}) − Tt() = (

∑
�∈�t(∪{�

�}) ����(�))
1

2 − Tt()   .
If �′ does not cover t, then Tt( ∪ {��}) − Tt() = 0 . Other-
wise, if �′ covers t, following the similar process for ���() , we
have Tt( ∪ {��}) − Tt() = ����(��)

/
(T2

t
() + ����(��))

1

2

Tt()) , which is an anti-monotonic function w.r.t.
Tt() . As Tt() is monotonic w.r.t.   , for any two
sets 1 ⊆ 2 and �� ∉ 2 , Tt(1) ≤ Tt(2) . Hence,
Tt(2 ∪ {��}) − Tt(2) ≤ Tt(1 ∪ {��}) − Tt(1) , no matter
whether �′ covers t. Thus, each term Tt() in ���() is a sub-
modular function w.r.t.  and ���() is hence a submodular
function w.r.t. .

In summary, both ���() and ���() are monotone sub-
modular functions w.r.t.  , and ���() is a monotone sub-
modular function w.r.t.  . Lemma 3 thus follows. 	� □

We now formulate the top-k ���� discovery problem over
observed facts.

Top-k supervised ���� discovery. Given a graph G, a
corresponding ontology O with an ontology closeness func-
tion ����(⋅) , a support threshold � , a confidence threshold

	 P. Lin et al.

1 3

� , training facts � as instances of a triple pattern r(x, y), and
integer k, the problem is to identify a set  of top-k �����
that pertain to r(x, y), such that (a) for each ���� � ∈  ,
����(�) ≥ � , ���� (�) ≥ � , and (b) ���() is maximized.

4 � Discovery Algorithm

4.1 � Top‑k ���� Discovery

Unsurprisingly, the supervised discovery problem for �����
is intractable. A naive “enumeration-and-verify” algorithm
that generates and verifies all k-subsets of ���� candidates
is clearly impractical for large G, O, and �  . We introduce
efficient algorithms with near-optimality guarantees. Before
we introduce these algorithms, we first introduce a common
building-block procedure that computes the pairs covered by
a subgraph pattern (“pattern matching” procedure).

Procedure ������ . We start with procedure ������ , an
ontology-aware graph pattern matching procedure. Given
knowledge graph G, ontology O, and closeness function
����(⋅) , for a subgraph pattern P(x, y), it computes the
node pairs (vx, vy) that can be covered by P(x, y). In a nut-
shell, the algorithm extends the approximate matching
procedure that computes a graph dual-simulation rela-
tion [28], while the candidates are dynamically determined
by ����(⋅) and O. More specifically, ������ first finds the
candidate matches v ∈ V of each node u ∈ VP , such that v
has a type that is close to u determined by ����(⋅) and O.
It then iteratively refines the match set that violates topo-
logical constraints of P by the definition of the matching
relation R, until the match set cannot be further refined.

Complexity. Note that it takes a once-for-all preprocess-
ing to identify all similar labels in the ontology O, in time
(|VP|(|VO| + |EO|) , following a traversal of O. Given
that O is typically small (and thus its diameter is a small
constant), the computation of ����(⋅) for given labels is
in O(1). It then takes ((|VP| + |V|)(|EP| + |E|)) time to
compute the matching relation for each pattern.

We next introduce ���� discovery algorithms.

“Batch + Greedy”. We start with an algorithm (denoted
as ����_����� ) that takes a batch pattern discovery and
a greedy selection as follows. (1) Apply graph pattern
mining (e.g., Apriori [20]) to generate and verify all the
graph patterns   . The verification is specialized by an
operator ������ , which invokes the pattern matching algo-
rithm ������ to compute the support and confidence for
each pattern. (2) Invoke a greedy algorithm to do k ����

passes of  . In each iteration i, it selects the pattern Pi ,
such that the corresponding ���� �i ∶ Pi(x, y) → r(x, y)
maximizes the marginal gain ���(i−1 ∪ {�i}) - ���(i−1) ,
and then it updates i as i−1 ∪ {�i}.

����_����� guarantees a (1 − 1

e
) approximation, fol-

lowing Lemma 3 and the seminal result in [30]. Neverthe-
less, it requires the verification of all patterns before the
construction of ����� . The selection further requires k
passes of all the verified patterns. This can be expensive
for large G and � .

We can do better: In contrast to “batch processing” the
pattern discovery and sequentially applying the verifica-
tion, we organize newly generated patterns in a stream and
interleave pattern generation and verification to assemble
new patterns to top-k ����� with small update costs. This
requires a single scan of all patterns with early termina-
tion, without waiting for all patterns to be verified. Capi-
talizing on stream-based optimization [1, 40], we develop
a near-optimal algorithm to discover ����� . Our main
results are shown below.

Theorem 1.  Given a constant � > 0, there exists a stream
algorithm that computes top-k ����� with the following
guarantees:

–	 (1) It achieves an approximation ratio (1
2
− �);

–	 (2) It performs a single pass of all processed patterns
 , with update cost in O((b + |�b|)2 + log k

�
) , where b is

the largest edge number of the patterns, and �b is the b
hop neighbors of the entities in � .

As a proof of Theorem 1, we next introduce such a stream
discovery algorithm.

“Stream + Sieve”. Our supervised discovery algorithm,
denoted as ����_������ (illustrated in Fig. 2), interleaves
pattern generation and ���� selection as follows.

Fig. 2   Algorithm ����_������

Fact Checking in Knowledge Graphs with Ontological Subgraph Patterns﻿	

1 3

(1) Ontology-aware pattern stream generation. The algo-
rithm ����_������ invokes a procedure ���� to produce
a pattern stream  (line 2 and 8). Unlike ����_����� that
verifies patterns against entire graph G, it partitions facts
� to blocks and iteratively spawns and verifies patterns by
visiting local neighbors of the facts in each block. This pro-
gressively finds patterns that better “purify” the labels of
only those facts they cover and thus reduces unnecessary
enumeration and verification. Instead of using exact match-
ing triples [26], ���� leverages the ontology O and the
closeness function ����(⋅) to group ontologically similar
triples for partitioning.

(2) Selection on-the-fly. ����_������ invokes a proce-
dure ���� (line 7) to select patterns and construct ����� on
the fly. To achieve the optimality guarantee, it applies the
stream-sieving strategy in stream data summarization [1].
In a nutshell, it estimates the optimal value of a monotonic
submodular function F(⋅) with multiple “sieve values,” ini-
tialized by the maximum coverage score of single patterns
(Sect. 3), i.e., �������=maxP∈ (���(P)) (lines 4-5), and
eagerly constructs ����� with high marginal benefits that
refines sieve values progressively.

The above two procedures interact with each other: Each
pattern verified by ���� is sent to ���� for selection. The
algorithm terminates when no new pattern can be verified
by ���� or the set  can no longer be improved by ���� (as
will be discussed). We next introduce the details of proce-
dures ���� and ����.

Procedure ���� . Procedure ���� improves its “batch”
counterpart in ����_����� by locally generating patterns
that cover particular sets of facts, following a manner of
decision tree construction. It maintains the following struc-
tures in each iteration i: (1) a pattern set i , which contains
graph patterns of size (number of pattern edges) i, and is
initialized as a size-0 pattern that contains anchored nodes
ux and uy only; (2) a partition set �i(P) , which records the
sets of facts P(� +) and P(� +) , is initialized as {� +,� −} , for
each pattern P ∈ i . At iteration i, it performs the following.

(1) For each block B ∈ �i−1 , ���� generates a set of graph
patterns i with size i. A size-i pattern P is constructed by
adding a triple pattern e(u, u�) to its size-(i − 1 ) counterpart
P′ in i−1 . Moreover, it only inserts e(u, u�) with instances
from the neighbors of the matches of P′ based on closeness
function ����.

(2) For each pattern P ∈ i , ���� computes its support,
confidence, and significance (G-test) by invoking proce-
dure ������ as in the algorithm ����_����� and prunes
i by removing unsatisfied patterns. It refines P�(� +)
and P�(� −) to P(� +) and P(� −) accordingly. Note that
P(𝛤 +) ⊆ P�(𝛤 +) , and P(𝛤 −) ⊆ P�(𝛤 −) . Once a promising
pattern P is verified, ���� returns P to procedure ���� for
the construction of top-k ����� .

Procedure ���� . To compute the set of �����  that maxi-
mizes ���() for a given r(x, y), it suffices for procedure ����
to compute top-k graph patterns that maximize ���()
accordingly. It solves a submodular optimization problem
over the pattern stream that specializes the sieve-streaming
technique [1] to �����.

Sieve streaming. [1, 26] Given a monotone submodular func-
tion F(⋅) , a constant �>0, and element set  , sieve streaming
finds top-k elements  that maximizes F() as follows. It first
finds the largest value of singleton sets m = maxe∈ F({e})
and then uses a set of sieve values (1 + �)j (j is an integer) to
discretize the range [m, k ∗ m] . As the optimal value, denoted
as F(∗) , is in [m, k ∗ m] , there exists a value (1 + �)j that
“best” approximates F(∗) . For each sieve value v, a set
of top patterns v is maintained, by adding patterns with a
marginal gain at least (v

2
− F(v))∕(k − |v|) . It is shown that

selecting the sieve of best k elements produces a set  with
F() ≥ (

1

2
− �)F(∗) [1].

A direct application of the above sieve streaming for
����� seems infeasible: One needs to find the maximum
���(�) (or ���(P) for fixed r(x, y)), which requires to verify
the entire pattern set. Capitalizing on data locality of graph
pattern matching, Lemma 3, and Lemma 1, we show that this
is doable for ����� with a small cost.

Lemma 4.  It is in O(|�1|) time to compute the maximum
���(P).

This can be verified by observing that ���(⋅) also pre-
serves anti-monotonicity in terms of pattern refinement,
because ���() is an aggregation of ���(�) and ���() is an
aggregation of support, both of which hold the anti-mono-
tonicity for single patterns. For any two patterns P(x, y) and
P�(x, y) , if P ⪯ P� , ���( ∪ {P�}) ≤ ���( ∪ {P}) . Thus,
the value maxP∈ ���(P) must be from a single-edge pat-
tern. That is, procedure ���� only needs to cache at most
|�1| size-1 patterns from ���� to find the global maximum
���(P) (lines 4-5 of ����_������).

Fig. 3   Procedure ���� : Sieve values induce sieve sets to cache promis-
ing subgraph patterns. Subgraph patterns are verified and top patterns
are selected in iterative discovery and selection

	 P. Lin et al.

1 3

The rest of ���� follows the sieve-streaming strategy, as
illustrated in Fig. 3. The ����� are constructed with the
top-k graph patterns (line 8).

Optimization. To further prune unpromising patterns, pro-
cedure ���� estimates an upper bound �̂�(P,vj

) (line 5 of

���� ) without verifying a new size-b pattern P. If
�̂�(P,vj

) < (
vj

2
− ̂���(vj

))
/
(k − |vj

|) , P is skipped without

further verification.
To this end, ���� f irst traces to an ����

�� ∶ P�(x, y) → r(x, y) , where P′ is a verified sub-pattern of
P, and P is obtained by adding a triple pattern r′ to P′ . It
estimates an upper bound of the support of the ����
� ∶ P(x, y) → r(x, y) as ̂����(𝜑) = ����(𝜑�)- l

|r(�+)| , where l is

the number of the facts in r(� +) that have no match of r′ in
their i hop neighbors (thus cannot be covered by P). Simi-
larly, one can estimate an upper bound for p and n in ���(⋅)
and thus get an upper bound ̂���b(𝜑) for ̂���(𝜑) . For each t in
� + , denote term

�∑
�∈�t()

����(�) in ���() as Tt() ; it

then computes �̂�(P,) as

To see that �̂�(P,) is an upper bound for ��(P,) , one may
note that the marginal gains for the significance part ̂���() and
the diversity part ���() are both defined in terms of square
roots. Given any two positive numbers a1 and a2 , an upper
bound of

√
a1 + a2 −

√
a1 is

a2

2
√
a1

 . We apply this inequality to

each square root term. Take significance for example,
���( ∪ {P}) − ���() ≤

√
���

2() + ̂���b(P) −

√
���

2()   .

When substituting a1 and a2 in the inequality by ���2() and
̂���b(P) , respectively, we can have the upper bound

̂���b(𝜑)

2���()
 . For

the other terms in ���() , we can apply the inequality simi-
larly to obtain the upper bound for each square root term.

Performance analysis. Denote the total patterns verified
by ����_������ as  , it takes O(||(b + |�b|)2) time to
compute the pattern matches and verify the patterns. Each
time a pattern is verified, it takes O(log k

�
) time to update

the set v . Thus, the update time for each pattern is in
O((b + |� |b)2 + log k

�
).

The approximation ratio follows the analysis of optimiz-
ing stream summarization [1], by viewing patterns as data
items that carry a benefit, and the general pattern coverage
as the utility function to be optimized. Specifically, (1) there

�̂�(P,) =
̂���b(𝜑)

2���()
+

(∑
t∈P(𝛤+)

̂����(𝜑)

2Tt()

)/|𝛤 +|

exists a sieve value vj = (1 + �)j ∈ [�������, k ∗ �������]
that is closest to F(∗) , say, (1 − 2�)F(∗) ≤ vj ≤ F(∗) ;
and (2) the set vj

 is a (1
2
− �) answer for an estimation of

F(∗) with sieve value vj . Indeed, if ��(P,vj
) satisfies the

test in ���� (line 5), then ���(vj
) is at least vj||

2k
=

vj

2
 (when

|| = k ). Following [1], there exists at least a value vj ∈ V
that best estimates the optimal ���(⋅) and thus achieves
approximation ratio (1

2
− �) . Thus, selecting ����� with

patterns from the sieve sets having the largest coverage guar-
antees approximation ratio (1

2
− �).

The above analysis completes the proof of Theorem 1.

4.2 � ����‑based Fact Checking

The ����� can be applied to enhance fact checking as rule
models or via supervised link prediction. We introduce two
����-based models.

Generating training facts. Given a knowledge graph G
= (V, E, L) and a triple pattern r(x, y), we generate train-
ing facts � as follows. (1) For each fixed r(x, y), a set of
true facts � + is sampled from the matches of r(x, y) in the
knowledge graph G. For each true fact 〈 vx , � , vy 〉 ∈ � + ,
we further introduce “noise” by replacing their labels to
semantically close counterparts asserted by ontology labels
from O and ����(⋅) . This generates a set of true facts that
approximately match r(x, y). (2) Given � + , a set of false
facts � − is sampled under the ontology-based PCA (Sect. 3).
A missing fact t= vx , � , v′

y
 is considered as a false fact only

when (a) there exists a true fact 〈 vx , � , vy 〉 in � + , and (b)
L(vy) ∉ ����(L(v�

y
),O) . We follow the silver standard [34]

to only generate false facts that are not seen in the existed
facts in G, thus � + ∩ � − = ∅.

Using ����� as rules. Given facts �  , a rule-based model,
denoted as �����R , invokes algorithm ����_������ to dis-
cover top-k �����  as fact checking rules. Given a new
fact t= vx , � , vy , it follows a “hit and miss” convention [15]
and checks whether there exists an ���� � in  that cov-
ers t (i.e., both the consequent and antecedent of � cover t),
in terms of ontology O and function ����(⋅) . If so, �����R
accepts t, otherwise, it rejects t.

Using ����� in supervised link prediction. Useful
instance-level features can be extracted from the patterns
and their matches induced by ����� to train classifiers. We
develop a second model (denoted as ����� ) that adopts the
following specifications. For each example t= 〈 vx , � , vy 〉
∈ �  , ����� constructs a feature vector of size k, where each
entry encodes the presence of the ith ���� �i in the top-k

Fact Checking in Knowledge Graphs with Ontological Subgraph Patterns﻿	

1 3

�����  . The class label of the example t is true (resp.
false) if t ∈ � + (resp. � −).

By default, ����� adopts logistic regression, which is
experimentally verified to achieve slightly better perfor-
mance than others (e.g., Naive Bayes and SVM). We find
that ����� outperforms �����R over real-world graphs (See
Sect. 5).

5 � Experimental Study

Using real-world knowledge bases, we empirically evaluate
the efficiency of ���� discovery and the effectiveness of
����-based fact checking.

Knowledge Graphs. We used five real-world knowledge
graphs, including (1) ���� [41] (version 2.5), a knowl-
edge base that contains 2.1M entities with 2273 distinct
labels, 4.0M edges with 33 distinct labels, and 15.5K tri-
ple patterns; (2) ������� [23] (version 3.8), a knowledge
base that contains 2.2M entities with 73 distinct labels,
7.4M edges with 584 distinct labels, and 8.2K triple pat-
terns; (3) �������� [43] (RDF dumps 20160801), a knowl-
edge base that contains 10.8M entities with 18383 labels,
41.4M edges of 693 relationships, and 209K triple patterns;
(4) ��� [38], a fraction of an academic graph with 0.6M
entities (e.g., papers, authors, venues, affiliations) of 8565
labels and 1.71M edges of six relationships (cite, coauthor-
ship); and (5) �������� [19], a social network of offshore
entities and financial activities, which contains 1M entities
(e.g., company, country, person, etc.) with 357 labels, 3.3M
relationships (e.g., establish, close, etc.) with 274 labels, and
633 triple patterns. We use �������� mostly for case studies.

Ontologies. We have extracted ontologies for each knowl-
edge graphs, either from their knowledge base sources like
����

1, �������2, and ��������
3. For datasets that do not

have external ontologies such as ��� and �������� , we
extend graph summarization [40] to construct ontologies.
Specifically, we start with a set of manually selected seed
concept labels (e.g., conferences, institutions and authors
from ��� ) and extend these ontologies by grouping their
frequently co-occurred labels in the node content (e.g., ven-
ues, universities, collaborators). We manually cleaned these
ontologies to ensure their applicability.

Methods. We implemented the following methods in JAVA:
(1) ����_������ , compared with (a) its “Batch + Greedy”
counterpart ����_����� (Sect. 4), (b) ����+ [14] that dis-
covers ���� rules, (c) ��� [22], the path ranking algorithm
that trains classifiers with path features from random walks,
and (d) ������� [37], a variant of PRA that makes use of
features from discriminant paths; (2) fact checking mod-
els �����R and ����� , compared with learning models (and
also denoted) by ����+ , ��� , and ������� , respectively.
For practical comparison, we set a pattern size (the number
of pattern edges) bound b = 4 for ���� discovery.

Ontology closeness. We apply weighted path lengths in
����(⋅) , in which each edge on a path has a weight accord-
ing to one of the three types of relations (Sect. 2.1) (1) Given
ontology O and two labels l and l′ , the closeness of l and l′ is
defined as 1 − ����(l, l�) , where ����(l, l�) is the sum of weights
on the shortest path between l and l′ in the ontology O, nor-
malized in range [0, 1]. (2) Given a threshold � , ����(l,O)
is defined as all the concept labels from O with closeness
no less than � . By default, we set � = 1, i.e., the subgraph
patterns enforce label equality by ensuring ����(l, l�) = 0,
which is same as ���� . As will be shown, varying � pro-
vides trade-off between discovery cost and model accuracy.

Model configuration. For a fair comparison, we made effort
to calibrate the models and training/testing sets with consist-
ent settings. (1) For the supervised link prediction methods
( ����� , ��� , and ������� ), we sample 80% of the facts in
a knowledge graph as the training facts �  , and 20% edges as
testing set   . For example, we use in total 107 triple patterns
over ������� , and each triple pattern has 5K-50K instances.
In � (resp.   ), 20% are true examples � + (resp.  + ), and
80% are false examples � − (resp.  − ). We generate � − and
 − under ontology-based ��� (Sect. 3) for all the models.
For all methods, we use logistic regression to train the clas-
sifiers (which is the default settings of ��� and ������� ).
(2) For rule-based �����R and ����+ , we discover rules
that cover the same set of � + . We set the size of ����+ rule
body to be 3, comparable to the number of pattern edges in
our work. (3) We evaluate the impact of ontology closeness
constraints to the efficiency and the effectiveness of ����-
based models, by varying the closeness threshold �.

Overview of results. We find the following. (1) It is feasible
to discover ����� in large graphs (Exp-1). For example,
it takes 211 seconds for ����_������ to discover �����
over ���� with 4 million edges and 3000 training facts.
On average, it outperforms ����+ by 3.4 times. (2) �����
can improve the accuracy of fact checking models (Exp-2).
For example, it achieves additional 30% , 20%, and 5% gain
of precision over ������� , and 20% , 15%, and 16% gain of
F1 score over �������� when compared with ����+ , ��� ,

1  http://resou​rces.mpi-inf.mpg.de/yago-naga/yago3​.1/yagoT​axono​
my.tsv.7z.
2 �������:http://mappi​ngs.dbped​ia.org/serve​r/ontol​ogy/class​es/.
3  https​://tools​.wmfla​bs.org/wikid​ata-expor​ts/rdf/expor​ts/20160​801/
dump_downl​oad.html.

http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTaxonomy.tsv.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTaxonomy.tsv.7z
http://mappings.dbpedia.org/server/ontology/classes/
https://tools.wmflabs.org/wikidata-exports/rdf/exports/20160801/dump_download.html
https://tools.wmflabs.org/wikidata-exports/rdf/exports/20160801/dump_download.html

	 P. Lin et al.

1 3

and ������� , respectively. (3) The ontological closeness
���� and threshold � enable trade-offs between discover-
ing cost and effectiveness. With smaller threshold � , while
����_������ takes more time to discover ����� , these

rules can cover more training instances and verify more
missing facts that are not covered by their counterparts
induced by larger � . (4) Our case study shows that �����
yields interpretable models (Exp-3).

Fig. 4   Efficiency of
����_������

(a) Varying |E| (DBpedia) (b) Varying |E| (Wikidata)

(c) Varying |Γ+| (DBpedia) (d) Varying |Γ+| (Wikidata)

(e) Varying σ (DBpedia) (f) Varying k (DBpedia)

(g) Varying β (YAGO)

10

102

103

104

0.6M 0.9M 1.2M 1.5M 1.8M
Ti

m
e

(s
ec

on
ds

)

OGFC_stream
OGFC_batch

AMIE+
PRA

10

102

103

0.4M 0.8M 1.2M 1.6M 2.0M

Ti
m

e
(s

ec
on

ds
)

OGFC_stream
OGFC_batch

AMIE+
PRA

0

0.5K

1K

1.5K

2K

3K 6K 9K 12K 15K

Ti
m

e
(s

ec
on

ds
)

OGFC_stream
OGFC_batch

AMIE+
PRA

10

102

103

104

1200 2400 3600 4800 6000

Ti
m

e
(s

ec
on

ds
)

OGFC_stream
OGFC_batch

AMIE+
PRA

101

102

103

104

0.05 0.10 0.15 0.20 0.25

Ti
m

e
(s

ec
on

ds
)

OGFC_stream OGFC_batch

101

102

103

104

200 400 600 800 1000

Ti
m

e
(s

ec
on

ds
)

OGFC_stream ε=0.10
OGFC_stream ε=0.05

OGFC_batch

0

101

102

103

1 0.75 0.5

Ti
m

e
(s

ec
on

ds
)

OGFC_stream OGFC_batch

0

101

102

103

1 0.75 0.5

Ti
m

e
(s

ec
on

ds
)

OGFC_stream OGFC_batch

(h) Varying β (DBpedia)

Fact Checking in Knowledge Graphs with Ontological Subgraph Patterns﻿	

1 3

We next report the details of our findings.

Exp-1: Eff iciency . We repor t the eff iciency
of ����_������ , compared with ��� , ����+ , and
����_����� , and study the efficiency with ontology close-
ness by varying � . ������� is omitted, since it has unstable
learning time and is not comparable.

Varying|E| . For ������� , fixing |� +| = 15K  , support
threshold � = 0.1 , confidence threshold � = 0.005, k = 200 ,
we sampled five graphs from ������� , with size (number
of edges) varied from 0.6M to 1.8M; for �������� , fixing
|� +| = 6K  , � = 0.001 , � = 5 × 10−5 , k = 50 , we sampled
five graphs, with size varied from 0.4M to 2.0M edges. Fig-
ure 4a, b shows that all methods take longer time over larger
|E|, as expected. (1) Figure 4a shows that ����_������ is
on average 3.2 (resp. 4.1) times faster than ���� + (resp.
����_����� ) over ������� due to its approximate matching
scheme and top-k selection strategy. (2) Although ����+
is faster than ����_������ over smaller graphs, we find
that it returns few rules due to low support. Enlarging rule
size (e.g., to 5) ����+ does not run to completion. (3) The
cost of ��� is less sensitive due to that it samples a (prede-
fined) fixed number of paths, but it does not perform well
in �������� (Fig. 4b). (4) ����_������ outperforms the
other three in �������� except |E| = 0.4M (Fig. 4b), which is
because ����_������ has an overhead to compute �������
and allocate sieves but too few rules can be discovered in
small data.

Varying |� +| . For ������� , fixing |E| = 1.8M  , � = 0.1 ,
� = 0.005 , k = 200 , we varied |� +| from 3K to 15K; for
�������� , fixing |E| = 2M , � = 0.001 , � = 5 × 10−5 , k = 50 ,
we varied � + from 1200 to 6000. As shown in Fig. 4c,

d, while all the methods take longer time for larger |� +| ,
����_������ scales best with |� +| due to its stream selec-
tion strategy. In ������� , ����_������ achieves compara-
ble efficiency with ��� and outperforms ����_����� and
����+ by 3.54 and 5.1 times on average, respectively.
In �������� , ����_������ outperforms others except
|� +| = 1200 , which is still because an overhead for small
data with too few rules.

Varying σ. Fixing |E| = 1.8M  , |� +| = 15K  , � = 0.005 ,
k = 200 , we varied � from 0.05 to 0.25 in ������� . As shown
in Fig. 4e, ����_����� takes longer time over smaller � ,
due to more patterns and ���� candidates need to be veri-
fied. On the other hand, ����_������ is much less sensitive
due to that it terminates early without verifying all patterns.

Varying k. Fixing |E| = 1.8M , � = 0.1 , � = 0.005 , we var-
ied k from 200 to 1000 in ������� . Figure 4f shows that
����_������ is more sensitive to k due to it takes longer
time to find k best patterns for each sieve value. Although
����_����� is less sensitive, the major bottleneck is its ver-
ification cost. In addition, we found that with larger � , less
number of patterns are needed; thus, ����_������ takes
less time.

Varying � . We next evaluate the impact of � to the cost of
����� discovery. We fix |E| = 1.2M , � = 0.01 , � = 0.005 ,
b = 4 , and k = 200 for ���� , and |E| = 1.5M , � = 0.1 ,
� = 0.005 , b = 4 , and k = 200 for ������� , we varied
� from 1 to 0.5. On the one hand, Fig. 4g, h shows that
it takes longer time to discover ����� for smaller � for
both ����_������ and ����_����� . This is because the
pattern verification cost increases due to more candidates
introduced by ����(⋅) . On the other hand, ����_������

Table 1   Effectiveness: average accuracy

���� �������

Model ���� ���� ��� F1 ���� ���� ��� F1

����� �.�� �.�� 0.60 �.�� �.�� �.�� 0.55 �.��

�����
R

0.73 0.40 0.75 0.50 0.70 0.43 0.72 0.52
����+ 0.71 0.44 0.76 0.51 0.69 0.50 0.85 0.58
��� 0.87 0.69 0.34 0.37 0.88 0.60 0.41 0.45
������� 0.87 0.62 0.36 0.40 0.88 0.75 0.60 0.63

�������� ���

Model ���� ���� ��� F1 ���� ���� ��� F1

����� �.�� �.�� 0.63 �.�� �.�� 0.86 �.�� �.��

�����
R

0.85 0.55 0.64 0.55 0.86 0.78 0.55 0.64
����+ 0.64 0.42 0.78 0.48 0.70 0.53 0.62 0.52
��� 0.90 0.65 0.51 0.53 0.77 0.88 0.21 0.32
������� 0.90 0.63 0.49 0.52 0.76 0.74 0.17 0.27

	 P. Lin et al.

1 3

improves ����_����� better over smaller � due to its early
termination. For example, it is 2.1, 4.4 and 8.14 times faster
than ����_����� over ������� when � is 1 (using label
equality), 0.75 and 0.5, respectively. Compared with ����

( � = 1 ), ����_������ is on average five times slower when
� = 0.75 and is on average 15 times slower when � = 0.50
over ������� . Actually, enabling ontologies will enlarge
training set � + , which takes longer time as verified in

Fig. 5   Impact factors to accu-
racy

(a) (b)

(c) (d)

(f)(e)

(g) (h)

Fact Checking in Knowledge Graphs with Ontological Subgraph Patterns﻿	

1 3

Fig. 4c, d. However, a benefit of ����� is to build a unified
model for multiple triple patterns r(x, y), rather than build-
ing a separate model for each r(x, y) as in ���� . In practice,
users can select applicable � (closer to 1) to avoid including
many similar labels.

Exp-2: Accuracy. We report the accuracy of all the models
in Table 1.

Rule-based models. We apply the same support threshold
� = 0.1 for ����+ and �����R . We set � = 0.005 for �����R
and set k = 200 . We sample 20 triple patterns and report the
average accuracy. As shown in Table 1, �����R constantly
improves ����+ with up to 21% gain in prediction rate,
and with comparable performance for other cases. We found
that ����+ reports rules with high support but not neces-
sarily meaningful, while ����� capture more meaningful
context (see Exp-3). Both models have relatively high recall
but low precision; due to that, they have a better chance to
cover missing facts but may introduce errors when hitting
false facts.

Supervised models. We next compare ����� with supervised
link prediction models. ����� achieves the highest predic-
tion rates and F1 scores. It outperforms ��� with 12% gain on
precision and 23% gain on recall on average and outperforms
������� with 16% gain on precision and 19% recall. Indeed,
����� extracts useful features from ����� with both high
significance and diversity, beyond path features.

We next evaluate the impact of factors to the model accu-
racy and study the impact of ontology closeness by varying
� in Fig. 5.

Varying � and � . For �������� , fixing |E| = 2.0M  ,
|� +| = 135K , and k = 200 , we varied � from 0.05 to 0.25
and compare patterns with confidence 0.02 and 0.04, respec-
tively, as shown in Fig. 5a. For ���� , fixing |E| = 1.5M ,
|� +| = 250K , and k = 200 , we varied � from 0.05 to 0.25
and compare patterns with confidence 0.001 and 0.002,
respectively, as shown in Fig. 5b. Both figures show that
����� and �����R have lower prediction rates when support
threshold (resp. confidence) is higher (resp. lower). That
is because fewer patterns can be discovered with higher � ,
leading to more “misses” in facts, while higher confidence
leads to stronger association of patterns and more accurate
predictions. In general, ����� achieves higher prediction rate
than �����R.

Var ying |� +| . For �������� , f ix ing |E| = 2.0M  ,
|� +| = 135K  , � = 0.001 , � = 5 × 10−5 , k = 200 , we vary
|� +| from 75K to 135K as shown in Fig. 5c; for ���� , fix-
ing |E| = 1.5M , � = 0.01 , � = 0.005 , k = 200 , we vary |� +|
from 50K to 250K as shown in Fig. 5d. Both figures show

that ����� and �����R have higher prediction rate when
providing more examples. Their precisions (not shown)
follow a similar trend.

Varying k. For �������� , fixing |E| = 2.0M , � + = 135K  ,
� = 0.001 , � = 5 × 10−5 , we varied k from 50 to 250. Fig-
ure 5e shows the prediction rate first increases and then
decreases. For rule-based model, more rules increase the
accuracy by covering more true facts, while increasing the
risk of hitting false facts. For supervised link prediction, the
model will be under-fitting with few features for small k and
will be over-fitting with too many features due to large k. We
observe that k = 200 is a best setting for high prediction rate.
This also explains the need for top-k discovery instead of a
full enumeration of graph patterns.

Varying b. For �������� , fixing |E| = 2.0M , � = 0.001 ,
� = 5 × 10−5 , and k = 200 , for ���� , fixing |E| = 1.5M ,
� = 0.01 , � = 0.005 , and k = 200 , for both data, we select
200 size 2 patterns and 200 size 3 patterns to train the mod-
els. Figure 5f verifies an interesting observation: Smaller
patterns contribute more to recall and larger patterns con-
tribute more to precision, because smaller patterns are more
likely to “hit” new facts, while larger patterns have stricter
constraints for correct prediction of true fact.

Varying � . Using the same setting as in Fig. 4g, h, we report
the impact of � to the accuracy of ����-based models. Fig-
ure 5g and h shows that with smaller � , ����� and �����R
achieve higher recall but retain reasonable precision. Indeed,
smaller � allows rules to be learned from more training
examples and cover more missing facts. As � is varied from
1 to 0.75 (resp. 0.5), for ���� , the recall of ����� increases
from 45% to 56% (resp. 70% ) with at most 5% (resp. 9% )
loss in precision; for ������� , the recall of ����� increases
from 31% to 42% (resp. 55% ) with at most 1% (resp. 4% ) loss
in precision. Note that for � = 1 , the results are the same
as using ���� without ontologies, which have much lower
recalls than ����� . This justifies the benefit of introducing
ontological matching.

Exp-3: Case study. We perform case studies to evaluate the
applications of �����.

Test cases. A test case consists of a triple pattern r(x, y)
and a set of test facts that are ontologically close to r(x, y).
According to the type information on nodes and edges, the
triple patterns are categorized in:

(a) Functional cases refer to functional predicates (a
“one-to-one” mapping) of relationship r between node vx
and node vy . For a relationship “capitalOf,” two loca-
tions can only map to each other through it, for example,
“London” is the capital of “UK”.

	 P. Lin et al.

1 3

(b) Pseudo-functional predicates can be “one-to-many,”
but have high functionality (a.k.a. “usually functional”).
For example, relationships like “graduatedFrom”
are not necessary functional, but are functional for many
“persons”.

(c) Inverse Pseudo-functional are those facts with
inversed pseudo-functional predicates (“many-to-one”), like
“almaMaterOf”.

(d) Non-Functional facts allow “many-to-many” mapping,
such as “workFor” between “person” and “organization”.

Accuracy. We show 30 r(x, y) cases from each category and
report their overall F1 scores in Table. 2. Non-functional
cases are those allow “many-to-many” relations, in which
case ��� may not hold [14]. We found that ����� performs
well for all test cases, especially for those non-functional
ones. Indeed, the relaxation of label equality by the ontology
closeness in both pattern matching and the ontology-based

��� helps improve the fact checking models in recall with-
out losing much precision (Fig. 5h, g), and the graph patterns
of ����� mitigate the non-functional bases with enriched
context.

Interpretability. We further illustrate three top ����� in
Fig. 6, which contribute to highly important features in
����� with high confidence and significance over a real-
world financial network �������� and two knowledge graphs
������� and ��������.

(1) ���� �3 : P3(x, y) → ���������������������
(company, company) ( �������� ) states that two (anony-
mous) companies are likely to have the same name and
registration date if they share shareholder and beneficiary,
and one is registered and within jurisdiction in Panama,
and the other is active in Panama. This ���� has support
0.12 and confidence 0.0086 and is quite significant. For the
same r(x, y), ����+ discovers a top rule as ����������(x,

Table 2   Case study: F1 scores over 30 test cases

���� �� ���� ���� r(x, y) ����+ ��� ������� �����
R

�����

Functional 1 〈prefecture, ���������� , district〉 ( ����) 0.75 1.00 1.00 0.60 0.88
2 〈site, ���������� , district〉 ( ����) 1.00 1.00 1.00 1.00 1.00
3 〈organization, ������������� , place〉 ( �������) 0.67 1.00 1.00 0.67 1.00
4 〈sportPlayer, ��������� , sportPlayer〉 ( �������) 1.00 1.00 1.00 0.90 1.00
5 〈position, ��������� , jurisdiction〉 ( ��������) 0.74 1.00 1.00 0.77 1.00
6 〈wikipedia, ��������� , family〉 ( ��������) 0.00 1.00 1.00 0.17 1.00
7 〈railStation, ����������� , village〉 ( ��������) 0.67 0.77 0.93 0.12 0.88

Pseudo-Functional 8 〈team, ������� , song〉 ( ����) 0.00 0.00 0.00 0.79 �.��

9 〈district, �������������� , conflict〉 ( ����) 0.52 0.60 0.92 0.96 �.��

10 〈event, ������������ , aircraftType〉 ( �������) 1.00 0.00 0.86 0.87 0.94
11 〈place, �������������� , politician〉 ( �������) 0.35 0.90 0.95 0.83 �.��

12 〈route, ���������� , city〉 ( �������) 0.57 0.67 1.00 0.64 0.93
13 〈music, �������������� , book〉 ( �������) 0.45 0.93 0.93 0.84 0.88
14 〈film, ���������� , book〉 ( ��������) 0.35 1.00 1.00 0.31 0.83

Pseudo-Functional (inverse) 15 〈person, ������������� , institute〉 ( ����) 0.54 0.09 0.47 0.76 �.��

16 〈person, ������� , school〉 ( ����) 0.52 0.19 0.59 0.51 �.��

17 〈scientist, ����������� , city〉 ( ����) 0.37 0.14 0.77 0.30 �.��

18 〈event, ��������������� , event〉 ( �������) 1.00 1.00 0.33 0.57 0.93
19 〈music, �������������� , music〉 ( �������) 0.49 1.00 0.96 0.64 1.00
20 〈article, ���� , genre〉 ( ��������) 0.83 0.00 0.75 0.24 �.��

21 〈MLPaper, ����������� , journal〉 ( ���) 0.24 0.11 0.00 0.46 �.��

Non-Functional 22 〈airport, ������������� , airport〉 ( ����) 0.54 0.35 0.00 0.76 �.��

23 〈country, ��������� , country〉 ( ����) 0.35 0.00 0.82 0.74 �.��

24 〈politician, ��������� , politician〉 ( �������) 0.34 0.55 0.67 0.57 0.75
25 〈athlete, ��������� , school〉 ( �������) 0.51 0.00 0.84 0.80 �.��

26 〈film, ������� , book〉 ( ��������) 0.32 0.29 0.36 0.45 �.��

27 〈drawing, ��������� , human〉 ( ��������) 0.80 0.06 0.11 0.81 �.��

28 〈AIPaper, ��������� , DBPaper〉 ( ���) 0.62 0.51 0.48 0.49 �.��

29 〈DMPaper, ��������� , AIPaper〉 ( ���) 0.51 0.38 0.43 0.54 �.��

30 〈author, �������������� , institute〉 ( ���) 0.70 0.37 0.51 0.50 �.��

Fact Checking in Knowledge Graphs with Ontological Subgraph Patterns﻿	

1 3

Jurisdiction_in_Panama) ∧ ����������(y, Jurisdiction_in_
Panama) and implies x and y has the same name and registra-
tion date. This rule has a low prediction rate.

(2) ���� �4 : P4(x, y) → ��������(TVShow, film)
( ������� ) states that a TV show and a film have relevant
content if they have the common language, authors, and pro-
ducers. This ���� has support 0.15 and a high confidence
and significant score. Within bound 3, ����+ reports a top
rule as ��������(x, z)∧ ��������(y, z) → ��������(x, y)
, which has low accuracy. This rule also identifies relevant
relationships between BBC programs (e.g., “BBC News at
Six”) and other programs that are relevant to “TVShow”
and “Films” respectively, enabled by ontological matching.
These facts cannot be captured by ���� or ����.

(3) ���� �5 : P5(x, y) → ����������(writer, philoso-
pher) ( �������� ) states that a writer vx influences a philoso-
pher vy , if vx influences a philosopher p and a scholar s,
who both influences a philosopher vy . This rule identifies
true facts such as 〈Bertrand Russel, ���������� , Ludwig
Wittgenstein〉, the influence between a logician and a phi-
losopher, enabled by ontological matching following O2.

6 � Conclusion

We have introduced ����� , a class of rules that incorpo-
rate graph patterns to predict facts in knowledge graphs. We
developed an ontology-aware rule discovery algorithm to find
useful ����� for observed true and false facts, which selects
the top discriminant graph patterns generated in a stream. We

have shown that ����� can be readily applied as rule models
or provide useful instance-level features in supervised link
prediction. The benefit of enabling ontologies is to build a
unified model for multiple triple patterns. Our experimental
study has verified the effectiveness and efficiency of ����
-based techniques. We have evaluated ����� with real-world
graphs and pattern models. One future topic is to extend
���� techniques for entity resolution, social recommen-
dation, anomaly detection, and data imputation. A second
direction is to extend ���� model to cope with multi-label
knowledge graphs or property graphs. A third future work is
to develop scalable �����-based models and methods with
parallel graph mining and distributed rule learning.

Acknowledgements  Wu, Lin, and Song are supported in part by NSF
IIS-1633629, USDA/NIFA 2018-67007-28797, a research grant from
Siemens and a research grant from Huawei Technologies.

Open Access  This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creat​ivecom-
mons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

	 1.	 Badanidiyuru A, Mirzasoleiman B, Karbasi A, Krause A (2014)
Streaming submodular maximization: massive data summariza-
tion on the fly. In: KDD

Fig. 6   Real-world �����
discovered by �����

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 P. Lin et al.

1 3

	 2.	 Baskaran S, Keller A, Chiang F, Golab L, Szlichta J (2017) Effi-
cient discovery of ontology functional dependencies. In: CIKM

	 3.	 Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka Jr, ER,
Mitchell TM (2010) Toward an architecture for never-ending lan-
guage learning. In: AAAI

	 4.	 Chen Y, Wang DZ (2014) Knowledge expansion over probabil-
istic knowledge bases. In: SIGMOD

	 5.	 Ciampaglia GL, Shiralkar P, Rocha LM, Bollen J, Menczer F,
Flammini A (2015) Computational fact checking from knowl-
edge networks. PloS One 10:e0128193

	 6.	 Cukierski W, Hamner B, Yang B (2011) Graph-based features
for supervised link prediction. In: IJCNN

	 7.	 Ding L, Kolari P, Ding Z, Avancha S (2007) Using ontologies
in the semantic web: a survey. In: Ontologies

	 8.	 Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K,
Strohmann T, Sun S, Zhang W (2014) Knowledge vault: a web-
scale approach to probabilistic knowledge fusion. In: KDD

	 9.	 Elseidy M, Abdelhamid E, Skiadopoulos S, Kalnis P (2014)
GRAMI: frequent subgraph and pattern mining in a single large
graph. PVLDB

	10.	 Fan W, Lu P (2017) Dependencies for graphs. In: PODS
	11.	 Fan W, Wang X, Wu Y, Xu J (2015) Association rules with

graph patterns. PVLDB
	12.	 Fan W, Wu Y, Xu J (2016) Functional dependencies for graphs.

In: SIGMOD
	13.	 Finn S, Metaxas PT, Mustafaraj E, O’Keefe M, Tang L, Tang S,

Zeng L (2014) Trails: a system for monitoring the propagation
of rumors on twitter. In: Computation and journalism sympo-
sium, NYC, NY

	14.	 Gal’arraga L, Teflioudi C, Hose K, Suchanek FM (2015) Fast
rule mining in ontological knowledge bases with amie++.
VLDBJ

	15.	 Galárraga LA, Teflioudi C, Hose K, Suchanek F (2013) Amie:
association rule mining under incomplete evidence in ontological
knowledge bases. In: WWW​

	16.	 Gardner M, Mitchell T (2015) Efficient and expressive knowledge
base completion using subgraph feature extraction. In: EMNLP

	17.	 Goodwin TR, Harabagiu SM (2016) Medical question answering
for clinical decision support. In: CIKM

	18.	 Hassan N, Sultana A, Wu Y, Zhang G, Li C, Yang J, Yu C (2014)
Data in, fact out: automated monitoring of facts by factwatcher.
PVLDB

	19.	 ICIJ: Offshore dataset. https​://offsh​orele​aks.icij.org/pages​/datab​
ase

	20.	 Jiang C, Coenen F, Zito M (2013) A survey of frequent subgraph
mining algorithms. Knowl Eng Rev 28(1):75–105

	21.	 Knappe R, Bulskov H, Andreasen T (2007) Perspectives on ontol-
ogy-based querying. Int J Intell Syst 22(7):739–761

	22.	 Lao N, Mitchell T, Cohen WW (2011) Random walk inference
and learning in a large scale knowledge base. In: EMNLP

	23.	 Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes
PN, Hellmann S, Morsey M, Van Kleef P, Auer S, et al (2015)
Dbpedia–a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web

	24.	 Li J, Cao Y, Ma S (2017) Relaxing graph pattern matching with
explanations. In: CIKM

	25.	 Lin H, Bilmes J (2011) A class of submodular functions for docu-
ment summarization. In: ACL-HLT

	26.	 Lin P, Song Q, Shen J, Wu Y (2018) Discovering graph patterns
for fact checking in knowledge graphs. In: DASFAA

	27.	 Lin Y, Liu Z, Sun M, Liu Y, Zhu X (2015) Learning entity and
relation embeddings for knowledge graph completion. In: AAAI

	28.	 Ma S, Cao Y, Fan W, Huai J, Wo T (2011) Capturing topology in
graph pattern matching. PVLDB

	29.	 Mahdisoltani F, Biega J, Suchanek F (2014) Yago3: A knowledge
base from multilingual wikipedias. In: CIDR

	30.	 Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of
approximations for maximizing submodular set functions-i. Math
Program 14(1):265–294

	31.	 Nickel M, Murphy K, Tresp V, Gabrilovich E (2016) A review of
relational machine learning for knowledge graphs. In: Proceedings
of the IEEE

	32.	 Niu F, Zhang C, Ré C, Shavlik JW (2012) Deepdive: Web-scale
knowledge-base construction using statistical learning and infer-
ence. VLDS

	33.	 Passant A (2010) dbrec-music recommendations using dbpedia.
In: ISWC

	34.	 Paulheim H (2017) Knowledge graph refinement: a survey of
approaches and evaluation methods. Semantic web

	35.	 Roche C (2003) Ontology: a survey. IFAC Proc Vol
36(22):187–192

	36.	 Shao C, Ciampaglia GL, Flammini A, Menczer F (2016) Hoaxy:
a platform for tracking online misinformation. In: WWW
companion

	37.	 Shi B, Weninger T (2016) Discriminative predicate path mining
for fact checking in knowledge graphs. Knowledge-based systems

	38.	 Sinha A, Shen Z, Song Y, Ma H, Eide D, Hsu BjP, Wang K (2015)
An overview of microsoft academic service (mas) and applica-
tions. In: WWW​

	39.	 Song C, Ge T, Chen C, Wang J (2014) Event pattern matching
over graph streams. PVLDB

	40.	 Song Q, Wu Y, Lin P, Dong XL, Sun H (2018) Mining summaries
for knowledge graph search. TKDE

	41.	 Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of
semantic knowledge. In: WWW​

	42.	 Thor A, Anderson P, Raschid L, Navlakha S, Saha B, Khuller S,
Zhang XN (2011) Link prediction for annotation graphs using
graph summarization. In: ISWC

	43.	 Vrandečić D, Krötzsch M (2014) Wikidata: a free collaborative
knowledgebase. CACM

	44.	 Wang Q, Liu J, Luo Y, Wang B, Lin CY (2016) Knowledge base
completion via coupled path ranking. In: ACL

	45.	 Wu Y, Agarwal PK, Li C, Yang J, Yu C (2014) Toward computa-
tional fact-checking. PVLDB

	46.	 Wu Y, Yang S, Yan X (2013) Ontology-based subgraph querying.
In: ICDE

	47.	 Yan X, Cheng H, Han J, Yu PS (2008) Mining significant graph
patterns by leap search. In: SIGMOD

	48.	 Zhu G, Iglesias CA (2017) Computing semantic similarity of con-
cepts in knowledge graphs. TKDE

https://offshoreleaks.icij.org/pages/database
https://offshoreleaks.icij.org/pages/database

	Fact Checking in Knowledge Graphs with Ontological Subgraph Patterns
	Abstract
	1 Introduction
	2 Fact Checking with Graph Patterns
	2.1 Graphs, Ontologies, and Patterns
	2.2 Ontological Graph Fact Checking Rules

	3 Supervised Discovery
	4 Discovery Algorithm
	4.1 Top-k Discovery
	4.2 -based Fact Checking

	5 Experimental Study
	6 Conclusion
	Acknowledgements
	References

