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Temporal association rules in networks

» Time-aware POI recommendation
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[ Requirement: AR’s with topological, semantic and temporal constraints J




Outline

» Graph temporal association rules (GTARs) definition

» GTARSs discovery problem formalization
» A feasible GTAR discovery algorithm

» Experiment study: verify the effectiveness of GTARs, and the
efficiency of GTAR discovery algorithm.




Temporal Graph

» Temporalgraph G{(V,E,L,T).

» SnapshotG,: induced by the set of all edges associated with
time stamp't.
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Graph temporal association rules (GTAR)
> GTAR ¢ = (P,=P,, , At)

> 0: common shared focus.

» At: a constant that specifies a time interval.

If there exists an occurrence of event P4 at an entity specified by G at some time
t, then it is likely that an event P, occurs at the same entity, within a time window
[t, t + At]
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Events and Matching

» Events
» Connected subgraph pattern carry a designated focus node. retweet
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GTAR occurrence

» Given a time window [t,,t,], ¢ occursif atleast a node matches
the focus of both P, and P, att, andt,, respectively.

» A time window may contain multiple occurrences of a GTAR.

» Minimal occurrence
» O(v)=[ty,t,] is an occurrence of ¢ in Gy supported by node v

» There existsno O’(v) CO(v), such that O’(v) is also an occurrence
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Support and Confidence

» Based on minimal occurrences O(g,G,)

O(@,G,)| _— # Occurrence of this rule

S ,Gp)=
upp((p T) |C(ﬁ)||T| - Normalizer

» Confidence: measures how likely P, occurs within At time
at the focus occurrence of P,

_—~~ # Support of this rule

Conf(,G,) = 21PPL@-Cr)
Supp(P,,G,) ™  # Support of LHS



GTAR Discovery

Informative GTARs

» Interestedin GTARs with high supportand confidence
» Maximal GTARs with size bound to be more informative

» In a b-maximal GTAR, both LHS and RHS have at most b edges.
The Discovery Problem

» Input: Temporal graph G, focus U, time interval At, size bound b,
supportthreshold g, and confidence threshold 6;

» Output: The set of b-maximal GTARs X pertainingto U and At such
that foreach GTAR ¢ € %, Supp(d, G;) 2 0, and Conf(d, G;) = 6.



GTAR Discovery

» Integrate event mining and rule discovery as a single process

» Intuition:
_ Rule with high support

COnf((p,GT) — Supp(ggaGT)
Supp(P,,G;) —— LHS with low support

» LHS generation by best-first strategy.

» Generate and verify best new LHS events

» RHS generation given fixed LHS

> To generate and validate new GTAR candidates by appending best RHS
events to verified LHS events.

» It prefers RHS events with high support.



GTAR Discovery

» GTAR discovery:
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Performance analysis and optimization
» Complexity:

» Time: O(|TIN(b)(b+|V][)(b+]|E[)+N(b)?|T])

» Space: O(N(b)|C(d)]]T]/)

» Sizebound b is smallin practice and

» Number of events N(b) is significantly reduced by pruningrules

» Optimization
» Pruningrules: extend (conditional) anti-monotonicity to GTARs
» Anytime performance:returning GTARs as the events are discovered

» Batch matching: merge snapshotstoagraph and performone
matching



Experimental Study

» Datasets
_ #Edges #Labels #Snapshots
Citation 4.3M 21.7M
Panama 839k 3.6M 433 12k
Movielens 81.5k 10M 21 1439
»Algorithms

» DisGTAR: our integrated algorithms including all pruning rules
» DisGTARN: without the pruning strategies. (Pruning)

» IsoGTAR: isolating the snapshots and computes event matching over each
snapshots one by one. (Batch matching)

» SeqGTAR: separating event mining and rule discovery to two independent
processes. (Integrate mining)



Performance of GTAR discovery

- DisGTAR DisGTARN SeqGTAR IsoGTAR

Tlme(s) #verif. Time(s) #verif. Time(s) #verif. Time(s) # verif.

Panama 1,194 276 8,393 560 8,393 N/A
Citation 22 157 994 12,507 1,621 12,507 12,721 11,461
Movielens 558 191 2,432 1,423 2,445 1423 N/A

[ DisGTAR outperforms DisGTARNn, SeqGTAR, and IsoGTAR by 6.28, 7.85 and 64.79 times J
on average




Anytime performance
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[ DisGTAR converges with high quality GTARs much faster than SeqGTAR ]




Scalability of DisGTAR
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Case Study
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Conclusion and future work

Conclusion
» We have proposed a class of temporal association rules over graphs
» We have studied the discovery problem of GTARSs

» Despitethe enhanced expressive power of GTARSs, it is feasible to find
and apply GTARs in practice.

Future work

» Extending GTARs to multi-focus and exploring other quality metrics

» Fast online discovery of GTARs over graph streams.
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Related Work
» Event Pattern Discovery by Keywords in Graph Streams (BigData’'17)

» BEAMS: Bounded Event Detection in Graph Streams (ICDE’16)
(http://eecs.wsu.edu/~ksasani/BEAMS/Display.php )




