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Abstract—Subgraph queries have been routinely used to
search graphs e.g., social networks and knowledge bases.
With little knowledge of underlying data, users often need
to rewrite queries multiple times to reach desirable answers.
Why-questions are studied to explain missing (as “Why-not”
questions) or unexpected answers (as “Why” questions). This
paper makes a first step to answer why-questions for subgraph
queries in attributed graphs. (1) We approach query rewriting
and construct query rewrites, which modify original subgraph
queries to identify desired entities that are specified by Why-
questions. We introduce measures that characterize good query
rewrites by incorporating both query editing cost and answer
closeness. (2) While computing optimal query rewrite is in-
tractable for Why-questions, we develop feasible algorithms,
from exact algorithms to heuristics, and provide query rewrites
with (near) optimality guarantees whenever possible, for both
Why and Why-not questions. These algorithms dynamically
select “picky” operators that ensure to change (estimated)
answers closer to desired ones, and incur cost determined by
the size of query results and questions only. We also show that
these algorithms readily extend to other Why-questions such
as Why-empty and Why-so-many. Using real-world graphs,
we experimentally verify that our algorithms are effective and
feasible for large graphs. Our case study also verifies their
application in e.g., knowledge exploration.1
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I. INTRODUCTION

Subgraph queries have been applied to access and un-

derstand complex networks such as knowledge bases [1] or

social networks [2]. Given a graph G, a subgraph query Q
is a (labeled) graph pattern, and the answer Q(G) of Q in G
refers to subgraphs of G that are relevant to Q. The answer

Q(G) can be defined by subgraph isomorphism [1], [3] or

approximate pattern matching [4], [5].

Writing queries to search large and heterogeneous graphs

is nevertheless a nontrivial task for end users. With little

prior knowledge of data, users often need to revise the

queries multiple times to find desirable answers. An explain

functionality supported by query rewriting is thus desirable

to help users understand the unexpected answers. Specifi-

cally, users may want to ask two classes of Why-questions:

1This is the full version of paper ”Answering Why-Questions for Sub-
graph Queries in Multi-Attributed Graphs” accepted by IEEE International
Conference on Data Engineering (ICDE) 2019
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Figure 1: Why and Why-not questions for subgraph queries.

◦ (1) Why question: “why some (unexpected) entities are

in the query answer?”; and

◦ (2) Why-not question: “why certain entities are miss-

ing from the query result?”

Answering these questions can help users to tune their

queries towards desirable answers, which further supports

effective graph exploration and query provenance [6].

Example 1: Fig 1 illustrates a fraction of a multi-attributed

knowledge graph G about products of an online store. Each

entity carries a type e.g., Cellphone and a list of attributes

(e.g., Price) with corresponding values (e.g., “$250”). A

user wants to search for Samsung cellphones packed with

color pink and carrier AT&T , with price less than $650
(represented by a subgraph query Q , with a marked node

“Cellphone?” designating the targeted entities). The query

returns three entities that match “Cellphone” in Q, with Sam-

sung models A5, S5, and S6, respectively. To further explore

the product, the user may ask the following questions.

(1) She is surprised to see two unexpected enti-

ties, with older models S5 and A5 are returned.

She may pose a follow-up Why question that speci-

fies search focus “Cellphone” and the two entities and

asks “Why S5 and A5 are in the query result of Q?” An
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Figure 2: Enabling exploratory graph search with Why-questions.

answer to such a question can be a revised query Q1 which

properly “tighten” the constraints in Q to exclude {S5, A5}.

Observing the difference between Q1 and Q, a possible

explanation for the Why question reveals that the user may

not be interested in Series A (due to a newly inserted edge

that specifies “Serie S”) and older (cheaper) versions of

Series S (as a new lower bar of price $120 is added).

(2) She is also wondering why two more recent mod-

els, S8 and S9, are not included in the current results.

She may pose a follow-up Why-not question, which asks

“Why model S8 or S9 are not in the query result?” An an-

swer to this question can be another query Q2, which

properly “relax” the conditions on the query , to include

the two entities. The difference between Q2 and Q reveals

that 1) both recent models are more expensive than expected

(as the price is relaxed to $790 in Q2), 2) there is no pink

S9 model, and no evidence shows that they are supported

by AT&T (both constraints are removed in Q2). �

These motivate the need for developing effective query

rewriting techniques to answer Why- questions for subgraph

query. Specifically, given a data graph G, a subgraph query

Q and answer Q(G), a set of missing entities VC with pos-

sible additional value constraints (resp. a set of unexpected

entities VN in Q(G)), the problem is to modify Q to a “query

rewrite” Q′, such that Q′(G) contains the entities in VC

(resp. excludes the entities in VN ) as much as possible.

The need of answering Why-questions is evident in ex-

ploratory graph search, as illustrated in Fig. 2. (1) The query

rewrite Q′ can be readily suggested to enable iterative query

processing, upon receiving users’ feedback on missing or

unexpected entities. (2) The difference between the query

rewrite Q′ and its original counterpart Q blends visual

querying and approximate search when G is large [7]. (3)

Query rewrites also support graph exploration [6], [8] by

suggesting entities relevant to missing and unexpected ones.

Contributions. We make a first step to answer Why-

questions for subgraph queries in multi-attributed graphs.

(1) We formalize Why-questions for subgraph queries in

terms of graph query rewrites (Section III-A). Given a

subgraph query Q, graph G, and answers Q(G), a Why-not

question asks whether there exists a query rewrite Q′ with

answers that contains Q(G) and a set of entities not in Q(G),
and satisfy certain value constraints C. A Why question, on

the other hand, finds Q′ that revises Q to have answers that

exclude specified entities from Q(G) (Section III-A).

(2) To characterize “good” query rewrites, we introduce

two measures, answer closeness and query editing cost, to

measure the closeness of query rewrite answers and desired

ones, and query rewrites to original queries, respectively

(Section III-C). The cost models are defined in terms of

a set of relaxation and refinement operators, aiming to tune

the search conditions of Q towards desired answers. Based

on the cost model, we formalize the problem of answer-

ing Why-questions, which is to compute query rewrite Q′

with optimized answer closeness given desired entities from

Why-questions, under a budget B of query editing cost. We

show that the problem is NP-hard for answering both Why

and Why-not questions.

(3) Despite the hardness, we develop both exact algorithms

that compute optimal query rewrites, and their fast alterna-

tives to compute high-quality query rewrites.

(a) For Why questions (Section IV), we develop an exact

algorithm to compute optimal query rewrite. The algorithm

uses a partial enumeration scheme that requires only the

verification of a class of maximal bounded operator set,

instead of all possible query rewrites. In addition, we develop

an approximation algorithm that achieves a near-optimality

guarantee 1
2 (1- 1

e
)-f(ε), where f(ε) is a function determined

by an estimation error ε of the quality of query rewrites.

(b) For Why-not questions (Section V), we show a coun-

terpart of the sufficient and necessary condition for Why

questions also holds, and develop an exact algorithm. We

also develop a fast heuristic that computes high-quality

query rewrites without any subgraph isomorphism test.

All these algorithms incur a cost that is only determined

by Q and its answer, size of user-specified entities in Why-

questions and editing budget, which are small in practice.
(4) Using real-world graphs, we experimentally verify the

effectiveness and efficiency of our algorithms (Section VI).

These algorithms are feasible for large graphs. For example,

our exact algorithms take up to 56 seconds to compute

optimal query rewrite for queries with 10 edges and lit-

erals, and for 3 missing/unexpected entities. Better still,

their approximation (resp. heuristic) counterpart is 9.7 times

(resp. 15 times) faster, take up to 10 seconds (resp. 11),

with up to 12% (resp. 16%) loss of quality. They return

informative query rewrites for e.g., exploring knowledge

bases, as verified by our case study.

These results yield effective methods toward feasible

data exploration in large graphs, fast query refinement and

completion, and graph data provenance techniques. All the

proofs and complexity analysis can be found in [9].

Related work. We categorize the related work as follows.

Why-questions for relational data. Why and Why-not

queries have been studied for relational queries [10]–[15].

There are typically two methods: (1) Data provenance mod-

ifies data such that the missing (resp. unexpected) answers

appear (resp. disappear) in the modified database; and (2)
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Query manipulation identifies the relational operators that

eliminate specific tuples [10] (for Why questions) or intro-

duce new ones [11], and update queries accordingly [15].

Such techniques have been studied for (reversed) top-k [12],

[14] and reverse skyline queries [13]. These work cannot

be directly applied for subgraph queries over general multi-

attributed graphs. We approach query rewriting to answer

Why-questions for subgraph queries.

Why-questions for graphs. Why-not questions have been

studied to support exploratory graph search, for both struc-

tured queries, such as SPARQL [16] and unstructured

queries, such as keyword queries [17] and pattern match-

ing [18]–[21]. (1) Similar to relational queries, SPARQL

queries are decomposed into basic operators and triple

patterns [16]. Operators that lead to empty answers are

identified, and relaxed to include more entities of interests.

(2) To explain empty answers for keyword queries in XML

data, terms with no content nodes included in the answers

are identified [17]. These terms are then replaced by their

counterparts with content nodes with similar semantics. (3)

To enrich the query results with more (diversified) matching

graphs, the query graph is reformulated into supergraphs

with maximized diversity [19]. Maximal common subgraphs

between queries and data graphs are computed to explain

“too many” or “too few” matched graphs [20], [21].

Closer to our work is answering Why-not queries in

graph databases [18]. Given a graph database, a query

graph and a set of missing graphs, the “Why-not” question

aims to find a subgraph by adding/deleting edges, such

that the missing graphs that contain it can be included in

the answer set. Our work differs from the prior work as

follows. (1) We focus on entity search with subgraph queries

in single attributed graphs. This is a different task with

searching graph databases that return all isomorphic (sub)

graphs. (2) Our methods support a rich set of structural and

semantic editing operators, not limited to edge insertion and

deletion only [17], [18]. Moreover, we consider practical

value constraints and cost models that yield more intuitive

explanations for entity search in graphs. (3) We develop

algorithms with provable performance guarantees for Why-

questions. These are not addressed by prior work.

Exploratory search. Exploratory search is commonly used to

help users to explore unfamiliar data [22], [23]. (1) Query

completion constructs queries progressively by suggesting

top-k possible query fragments that can be added into

the query, where the fragments are discovered as frequent

subgraphs [22]. Instead, we discover “picky” structures and

operators to construct new queries for users. Indeed, frequent

subgraphs are not necessarily helpful to acquire specific enti-

ties. (2) Query generation by example learns how to generate

queries from a set of positive and negative examples [23],

which may be “missing” and “unexpected” entities. The

approach in [23] is developed for relational queries only, and

does not apply for general subgraph queries. (3) Querying by

example [24] finding similar answers to specified examples

rather than computing queries that identify them. Why-

questions cannot be directly answered by these methods.

II. GRAPHS AND SUBGRAPH QUERIES

We start with the notions of graphs and subgraph queries.

Graphs. We consider a directed graph G = (V,E, L, FA),
where V is a finite set of nodes and E ⊆ V × V
is a set of edges. Each node v ∈ V (resp. edge e ∈
E) carries a label L(v) (resp. L(e)). FA(v) is a tuple

<(A1, a1),. . . ,(An, an)>, where Ai is a node attribute, and

constant ai ∈ D(Ai) is the value of attribute v.Ai. Here

D(Ai) is a finite active domain of attribute Ai, which

records all the values of v.Ai appeared in G with node v
ranges over V . In practice, the node and edge label may

represent type and relation (predicates), respectively, and

FA(v) may encode the node content such as properties in

e.g., social networks and knowledge bases.
We introduce a class of subgraph queries with output

nodes for practical entity search in graphs.

Subgraph queries. A subgraph query Q is a graph

(VQ, EQ, LQ, FQ, uo), where (1) VQ (resp. EQ ⊆ VQ×VQ)

is a set of query nodes (resp. query edges); (2) For each

node u ∈ VQ with a label LQ(u), FQ(u) is a predicate

that contains a set of literals. Each literal is in the form of

u.A op c, where op is a comparison operator from the set

{>,≥,=,≤, <} defined on the domain of attribute A, and c
is a constant. Specifically, there is a designated output node

uo ∈ VQ. The output node indicates the “search focus”, for

which the matched entities are returned as answers of Q.
For simplicity, we refer to subgraph query as “query”. We

refer to the size of query Q, denoted as |Q|, as the sum of

the number of literals and edges of Q.

Query answer. Consider a query node u in a query Q
with label LQ(u) and predicate FQ(u). A node v in G
is a candidate of u if (1) L(v)=LQ(u), and (2) for each

literal l∈FQ(u) in the form of u.Ai op c, (v.Ai, ai)∈FA(v)
and aiop c. For example, given a literal l=′u.Ai≤c′, then

(Ai, c)∈FA(v) and c ≤ c′, for any candidate v of u.
Given query Q = (VQ, EQ, LQ, FQ, uo) and a graph G,

a match of Q in G is a subgraph Gs = (Vs, Es, L, FA) of

G, such that there exists a bijective matching function h ⊆
VQ×Vs, where (1) for each node u ∈ VQ, h(u) is a candidate

of u, and (2) e = (u, u′) is an edge in Q if and only if e′ =

(h(u), h(u′)) is an edge in Gs and L(e) = L(e′). Given a

query node u ∈ VQ, the matches of u, denoted as Q(u,G),
refers to the set of all the nodes in G that can match node

u via a matching function h(u) from Q to G. We define

the answer of Q in G as Q(uo, G), i.e., the matches of the

output node uo of Q in G (Q(uo, G) ⊆ V ).

Remarks. Queries with output nodes are commonly used to

identify entities in e.g., social networks [25] and knowledge
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Notation Description

G=(V,E, L, FA) attributed graph G

Q=(VQ,EQ,LQ,FQ,uo) subgraph query Q, with output node uo

Q(uo, G) query answer of Q in G

(uo, VCu , C) Why-not (w. missing nodes VCu , constraints C)

(uo, VNu ) Why question (w. unexpected nodes VNu )
Q′=Q ⊕ O A query rewrite induced by operator set O

c(O) Editing cost of operator set O

cl(O) Closeness for Why-questions

Nd(VNu ) d-hop neighbors of the nodes in VNu

Table I: Notations

graphs [26]. To simplify the discussion, we focus on a single

output node. Nonetheless, our results extend to multiple ones

(Section V). We invite the readers to consult [9] for details.

Example 2: The query Q illustrated in Fig. 1 has an output

node uo with label Cellphone, which indicates that the user

searches for cell phones. Given the graph G, one can verify

that the answer Q(uo, G) = {A5, S5, S6}. We abuse the

model value of a Cellphone as its identifier for simplicity;

similarly for the answer of queries Q1 and Q2. �

III. WHY-QUESTIONS FOR SUBGRAPH QUERIES

A. Categorization of Why-Questions

We study two classes of Why-questions, “Why-not” and

“Why”, for subgraph queries. These questions have their

counterparts in relational query provenance [10]–[15], and

are specialized for graph search.

Why-not. A Why-not question aims to clarify missing

answers in Q(uo, G). Given a graph G = (V,E, L, FA), a

query Q = (VQ, EQ, LQ, uo), answer Q(uo, G), a Why-not

question is a triple (uo, VCu
, C), where (1) uo is the output

node of Q, (2) VCu
⊆ V \ Q(uo, G) is a set of “missing

matches” of uo, and (3) C is a (possibly empty) selection

condition to further describe the expected entities of interests

(discussed later). In practice, VCu
can be directly specified,

or identified by established keyword search in graphs [8].

Beyond encoding user feedback as missing nodes VCu
, a

user-defined selection condition C can be posed on VCu
and

Q(uo, G) to further describe expected entities in a similar

way to enforce predicates in Q. Formally, C =
∧

l is a

conjunction of literals, where each literal l is in the form of

either x.A op c or x.A op y.A (op ∈ {<,≤,=, >,≥}), and

x and y are variables that can be matched by nodes from

VCu
∪Q(uo, G)). As such, C can be used to refine VCu

(as

constraints), or retrieve lineage information (as a query) [15].

A general Why-not question asks “Why the nodes in VCu
,

with attribute values that satisfy the value constraints in C
(if not empty), are not matches of u of Q?”

Why. A Why question (uo, VNu
) is similarly defined on a

targeted output node uo of Q, yet on a set of unexpected

answers VNu
⊆ Q(uo, G), for a given query Q. It asks “Why

the nodes in VNu
are included as matches for u in G?”

Example 3: A Why question (Cellphone, {A5, S5}) (illus-

trated in Fig. 1) asks “why Q(uo, G) includes cell phones

with model A5 and S5?” Similarly, a Why-not question

(Cellphone, {S8, S9}, {Cellphone.OS≥ 5.0}) asks “Why are

the cell phones with models S8 and S9 not in Q(uo, G)?”

Here the constraint C further specifies that only the cell

phones with newer OS are of interests. �

B. Answers for Why-Questions

We approach query refinement [15] to answer Why-

questions. We start with a set of query editing operators.

We then introduce query rewrites based on these operators.

Query rewrites. We use six classes of primitive query

editing operators. These operators either relax or refine

search constraints of a given query Q, for any graph.

Relaxation operators. These include:

◦ RxL (u.A op c, u.A op’ c′): relax the literal (u.A op

c)∈FQ(u) to u.A op’ c′;
◦ RmL (u, l): remove a literal l from FQ(u); and

◦ RmE (u, u′): remove an edge e=(u, u′) in Q.

Refinement operators. These include:

◦ RfL (u.A op c, u.A op’ c′): refine a literal (u.A op c) ∈
FQ(u) to u.A op’ c′, such that u has fewer candidates;

◦ AddL (u.A op c): add literal (u.A op c) to FQ(u); and

◦ AddE (u, u′): add a new edge e=(u, u′) . More specifi-

cally, (a) if nodes u and u′ are both in Q, AddE (u, u′)
adds a new edge with edge label; (b) assume w.l.o.g.

the node u′ is not in Q, then AddE (u, u′) creates u′

with specific labels/literals (see Sections IV-V).

We shall refer to RxL, RfL, RmL, and AddL (resp. RmE

and AddE) as node operators (resp. edge operators), as they

involve a single query node (resp. query edge).

A query rewrite Q′ of Q is a query obtained by applying

an operator set O to Q (denoted as Q′=Q⊕O). Note that the

query rewrites preserve the output node of Q, due to unlikely

change of user’s search focus in follow-up Why-questions.

Answering Why-questions. Given query Q, Q(uo, G) and

graph G, a query rewrite Q′ of Q is an answer of a Why-

not question (uo, VCu
, C), if (1) Q′(uo, G) ∩ VCu


= ∅,

and (2) Q′(uo, G) satisfies all constraints of C. That is,

Q′(uo, G) contains at least a “missing” match that satisfies

C. Similarly, it answers a Why-question (uo, VNu
) if there

exists at least a node v ∈ VNu
such that v /∈ Q′(uo, G).

That is, Q′ excludes unexpected match v.

Query rewrites provide a natural way to explain answers.

The editing operators that modify Q to Q′ suggest query

manipulations that are responsible to “missing” or “unex-

pected” answers, as verified by the result below.

Lemma 1: Given a query Q with output node uo, for any

query rewrite Q′=Q⊕O and any graph G, Q(uo, G) ⊆
Q′(uo, G) (resp. Q′(uo, G) ⊆ Q(uo, G)), if O contains

relaxation (resp. refinement) operators only. �

As a first step towards answering Why-questions for

subgraph queries, we shall use relaxation (resp. refinement)
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operators to answer Why-not (resp. Why) questions. We

defer the case that uses arbitrary operators in future work.

C. Measures of Subgraph Query Rewrites
We next introduce cost models for operator set that mod-

ifies query Q to Q′, to characterize “good” query rewrites.

Query editing cost. A query rewrite Q′ should be similar to

the original query Q, thus more likely to preserve Q(uo, G)
and incur less recognition effort. Intuitively, operators O
that modify more “important” fraction (closer to uo) of Q
should be more “expensive”. For example, changing “price”

on output node Cellphone of Q (Fig. 1), should be more

expensive than altering its neighbor Color as adjectives.

Output centrality. Given Q with output node uo, denote the

diameter of Q as dQ, the output centrality of a query node

u′ in Q, denoted as oc(u′), is computed as

oc(u′, uo) =
dQ

d(u′, uo) + 1
where d(u′, uo) is the distance from u′ to the output node uo.

The output centrality is a normalized closeness centrality in

terms of uo. Intuitively, the “closer” u′ to uo, the more “im-

portant” u′ is in Q (as observed in concept closeness [27]).

Given query rewrite Q′=Q ⊕ O, the cost of O, simply

denoted by c(O) (for given Q), is defined as

c(O) =
∑

o∈O

c(o),

where the cost c(o) for a single operator o ∈ O is defined

as: (1) if o is a node operator posed on node u, c(o) =

oc(u, uo); (2) if o is an edge operator on edge e=(u, u′),
c(o) = min(oc(u, uo), oc(u

′, uo)).

Remarks. Our output centrality model extends to a case that

incorporates the number of changes to literals with compa-

rable constant values. For example, relaxing “price≤ 500”

to “price≤ 1000” should be more expensive than changing it

to “price≤ 600”. For operator o as either RxL or RfL, it can

be treated as “removing a literal” (with a unit cost) and “add

a new one” (that accounts for value difference). Thus c(o) =

w(o) · oc(u, uo) and w(o) can be defined as 1+ |c′−c|
range(D(A)) ,

where range(D(A)) is the range of the active domain D(A)
(Section II) of attribute A in G.

The editing cost penalizes operators that are ”closer” to

the output node (and introduce larger difference to value

constraints when possible). The smaller c(O) is, the better.

Our general cost model and techniques apply to disconnected

query rewrites (due to RmE; see Section IV and V).

Answer closeness. The query rewrites should also ensure

answers that are as close as the desired ones. We take a

pragmatic dichotomous measure to distinguish and quan-

tify the impact of (1) entities that “should be” excluded

or included suggested by Why-questions, and (2) entities

“unnecessarily” removed or introduced by a guard condition.

c(O) measures the difference between Q and Q′ while

closeness measures the difference between their answers.

Closeness for Why-questions. Given Q(uo, G) and a Why-

question, the answer closeness cl(·) of a query rewrite Q′ =

Q⊕O is defined accordingly as follows.
(1) For a Why question (uo,VNu

),

cl(O, VNu) =
|(Q(uo, G) \Q′(uo, G)) ∩ VNu |

|VNu |

which measures the fraction of VNu
that are excluded from

Q′(uo, G); the more, the better.
(2) For a Why-not question (uo, VCu

, C),

cl(O, VCu) =
|Q′(uo, G) ∩ VCu |

|VCu |

which measures the fraction of new matches in VCu
that

are introduced in Q′(uo, G); the more, the better. We denote

the answer closeness as cl(O).

Guard conditions. To further penalize the entities “unneces-

sarily” added or removed from original answer Q(uo, G), we

set a guard condition for both Why and Why-not questions.

(1) To penalize the nodes unnecessarily excluded from

Q(uo,G) for Why questions, we pose a guard condition as

|(Q(uo, G) \Q′(uo, G)) ∩ (Q(uo, G) \ VNu
)| ≤ m

That is, we only consider query rewrites that exclude no

more than m nodes from the “desired” fraction of Q(uo, G),
where m ≤ |Q(uo, G)| can be set by users.

(2) Similarly, for Why-not questions, a guard condition is

posed for any operator set O to ensure

|Q′(uo, G) \ (Q(uo, G) ∪ VCu
)| ≤ m

That is, only query rewrites that introduce no more than

m “undesired” matches are considered to be valid.

Example 4: The query Q1 (Fig. 1) answers the Why

question in with operators O1 = {AddL(Cellphone.Price >
$120), AddE(Cellphone,Series), AddL(Series.Serie = S)}
with answer closeness cl(O1, {A5, S5})=1. Given dQ=2 and

output node Cellphone, the total cost c(O1) is 4. Similarly,

we can verify that the query Q2 answers the Why-not

question with operators O2 = {RmE(Cellphone,Color),
RxL(Cellphone.price, $799), RmL(Deal, carrier)}, cost

c(O2)=4.2, and answer closeness cl(O2, {S8, S9}) = 1. �

We formulate the problem of answering Why-questions.

Problem statement. Given a query Q, answer Q(uo, G),
graph G, a Why-question W , and an editing budget B, the

problem of answering why-question is to compute a query

rewrite Q∗=Q⊕O∗, such that

O∗ = argmax
O:c(O)≤B

cl(O, Vu)

where set Vu refers to VCu
(resp. VNu

) for a Why-not

question (resp. Why question) W with guard conditions.

That is, it is to compute a query rewrite Q′ that ensures

an answer that is closest to the desired one specified by W ,

and incurs bounded editing cost.

These problems are, nevertheless, nontrivial.

Theorem 2: The problem of answering Why questions and

Why-not questions are both NP-hard. �
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Algorithm ExactWhy

Input: graph G, query Q, cost bound B > 0,
Why question W = (uo, VNu), integer m (guard condition);

Output: the optimal query rewrite Q′ that answers W .

1. Q′ := ∅; O′ := ∅; O := GenMBS(Q,G, VNu , B);
2. for each set O ∈ O do

3. if cl(O′, VNu) < cl(O) and guard(O) ≤ m then

4. Q′=Q⊕O′; O′=O;
5. if cl(O′, VNu) = 1 then break ;
6. return Q′;

Figure 3: Algorithm ExactWhy

One may show the hardness by constructing a reduction

from subgraph isomorphism, for Why-not questions, and k-

clique, for Why questions (see detailed proofs in [9]).

IV. ANSWERING WHY QUESTIONS

We start with algorithms that answer Why question.

A. Computing Optimal Query Rewrites

An optimal query rewrite is induced by an operator set

O with c(O) ≤ B that maximized cl(O) and satisfies the

guard condition. It is clearly not practical to verify all query

rewrites for a Why question. Fortunately, it suffices to verify

those induced by a class of maximal bounded set (MBS).

Given Q, B and guard condition, an operator set O is an

MBS, if O satisfies guard condition, c(O) ≤ B, and there

exists no other set O′ such that c(O′) ≤ B and O ⊂ O′.

We have the following sufficient and necessary condition.

Lemma 3: Given Q and budget B, a query rewrite Q′ is

optimal if and only if there exists a MBS O, such that Q′ =
Q⊕O, and O has a maximized cl(O) among all MBS. �

This result can be easily verified by Lemma 1 and the

definition of answer closeness for Why questions (see [9]).

Algorithm. Our first algorithm, denoted as ExactWhy and

illustrated in Figure 3, makes use of Lemma 3. It takes a

partial enumeration scheme to only verify MBS.

(1) It first invokes a procedure GenMBS to generate a set of

all MBS O (line 1).

(2) It then verifies the query rewrites induced by MBS,

following the ascending order of their cost. For each operator

set O ∈ O, it verifies the closeness of Q′ with a procedure

Match, which adapts subgraph isomorphism verification to

VN . It chooses the set O that (a) maximizes cl(O), and

(b) removes no more than m nodes from Q(uo, G) \ VNu

(guard(O) ≤ m), and returns Q′ by applying O to Q.

We next introduce procedures GenMBS and Match.

Procedure GenMBS. Procedure GenMBS “reverse engi-

neers” node pruning in standard subgraph isomorphism.

Instead of finding nodes that are non-matches, the goal is

to find operators O, that if applied to Q, can exclude VNu
.

GenMBS uses a two-step construction: first generates a set

of all the “picky” operators Os, each is promising to prune

at least a node in VNu
, and then constructs MBS with Os.

While the query rewrites can be disconnected, the correct-

ness of the algorithm remains intact (see “Correctness”).
The procedure GenMBS uses the following notions. (1)

Let Nd(VNu
) (resp. Nd(VNu

)) denote the d-hop neighbors

of the nodes in VNu
(resp. Q(uo, G)\VNu

) in G, i.e., nodes

having distance d to some nodes in VNu
. Given a node u′

in Q with distance d(u′, uo) to the output node uo, we

define a set N(VNu
, u′) (resp. N(VNu

, u′)) as the nodes

in Nd(u′,uo)(VNu
) (resp. Nd(u′,uo)(VNu

)) having the same

label of u′. (2) Given a node u′ and a literal l = u′.A op

c ∈ FQ(u
′), attribute u′.A is common (resp. differential) if it

is in a literal of a node v ∈ N(VNu
, u′), and is in a literal of

a (not necessarily the same) node v′′ (resp. not seen in any

literal of the nodes) from N(VNu
, u′). (3) The active domain

of attribute A w.r.t. node set V , denoted as dom(A, V ), is a

set of all the distinct values of v.A with v ranges over V .

Generating picky operators. Given VNu
, a single refinement

operator o is picky, if Q ⊕ {o} may exclude a node in

VNu
from Q(uo, G), by reducing candidates. To ensure the

completeness, GenMBS generates AddE first, followed by

AddL and RfL. It applies the following rules.

Generating AddE. GenMBS first adds operator AddE(e) to

insert a new query edge e = (u1, u2), if and only if there

is an edge e′= (v1, v2), and v1 ∈ N(Q(uo, G), u1), and

v2 ∈ N(Q(uo, G), u2). Specifically, (1) When both u1 and

u2 are in Q, it inserts e and sets L(e)=L(e′); (2) Assume

w.l.o.g. u2 is not in Q, it extends AddE (e) to a “composite

operator”: for each attribute v2.A, it also adds AddL(l) to

insert a template literal l = (u2.A, ‘⊥’, ‘ ’), where op =

‘⊥’ is a placeholder (“don’t care”), and wildcard ‘ ’ means

“any value”, both to be resolved. As either u1 or u2 is in Q
with diameter dQ, any query rewrite of Q induced by this

operator has diameter at most dQ+1.

Generating AddL. These rules insert new literals to Q
that involve both common and differential attributes to

reduce candidates. For each node u′ in Q and literal l =

u′.A op c, there are two cases. (1) Pairing constraints.

if u′.A is a common attribute and op ∈ {>,≥} (resp.

op ∈ {<,≤}) specifying lower (resp. upper) bar, but no

“pairing” constraints is found at u′, it adds a template literal

AddL(u′.A,≤, ‘ ’) (resp. AddL(u′.A,≥, ‘ ’)) to Os, where

‘ ’ is a wildcard to be resolved. (2) Differential attributes.

if u′.A is differential, it adds a template literal AddL(u′.A,
‘⊥’, ‘ ’), to be refined.

Generating RfL. These rules refine existing literals in Q
to reduce candidates. Given dom(A,N(VNu

, u′)) and each

literal l = u′.A op c ∈ FQ(u
′),

◦ if op ∈ {<,≤}, for each a ∈ dom(A,N(VNu
, u′)), and

c ≥ a, add RfL(l, u′.A < a);

◦ if op ∈ {>,≥}, for each a ∈ dom(A,N(VNu
, u′)) and

c ≤ a, add RfL(l, u′.A > a);
◦ if op is ‘=’, for each a ∈ dom(A,N(Q(uo, G), u′) such

that a 
= c, add RfL(l, u′.A = a).
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Intuitively, each of these operators is picky in that there

always exist at least a candidate v′ ∈ N(VNu
, u′) that fails

the literal it enforces, thus may in turn removes matches in

VNu
. Note u′ can be the targeted output node u itself.

Resolving templates. The last step of GenMBS resolves

those AddL(l) with template literals l in Os, by replacing

l with constant literals. (1) For l = (u′.A, ‘⊥’, ‘ ’), it

replaces ‘⊥’ to any of {<,≤,=,≥, >}, and reduces AddL(l)
to its counterparts with literals carrying ‘ ’ only. (2) It

then resolves each template with ‘ ’ by a case analysis for

op, following the rules used in “Generating RfL” to derive

“picky” literals. This replaces all AddL(l) with template

literals to a set of picky operators applicable to Q.

Example 5: Recall the Why question in Example 1 with

VNu
= {A5, S5}, and let budget B as 4. A fraction

of a picky set, which includes o1 = AddE (Cellphone,

Series), o2 = AddL (Series.val = Series:S)}, and o3 =

AddL (Cellphone.Price>$120, is generated by GenMBS as

follows. (1) It first follows rules for adding AddE, and

add o1 ={AddE(Cellphone,Series). As a part of composite

operator, it also adds o4 = AddL(Series.val, ‘⊥’, ‘ ’)} with

a template literal. (2) Next, adds a pairing constraints o5 =

AddL (Cellphone.Price>‘ ’), with a template literal. (3) It

generates RfL operators with common attributes (omitted).

GenMBS next resolves the template literals. (a) It first

replaces o4 with operators with specific op, including

o6 = AddL(Series.val = ‘ ’)}. (b) It then resolves the

template literals in o6 and o5, respectively. For o6, as

dom(Series.val,N(VNu
,Series)) = {Series : S, Series :

A}, it replaces o6 with o2 = AddL(Series.val = Series :
S)} to exclude A5, and o7 AddL(Series.val = Series :
A)} to exclude S5, both are picky operators. For o5,

it finds that dom(Cellphone.Price,N(VNu
,Cellphone)) =

{$250, $120}, thus replaces o5 with picky operators o3 =

AddL (Cellphone.Price> $120) to exclude S5, and o8 =

AddL (Cellphone.Price> $250) which excludes S5 and A5.

The picky set contains o1- o3, o7, o8, among others. �

Computing MBS. Once the picky set Os is generated, it

continues to compute bounded maximal sets O by partially

enumerating P(Os) as the power set of Os, up to those

with cost bound no larger than B. That is, an operator set O
is added to O whenever adding an operator makes its cost

larger than B. The set O is then returned for verification.

The result below verifies that it suffices to only use the

picky set computed by GenMBS to answer Why questions.

Lemma 4: [completeness of picky set] For any optimal

query rewrite Q′=Q⊕O, O∈P(Os) (power set of Os). �

Proof sketch: It suffices to show that any single operator

o /∈ Os, and their combinations, do not change cl(·) (not

“picky”). This can be verified by a case analysis below.

(1) Empty candidates. For example, no refinement can be

triggered for literals l = u′.A op c, op ∈ <,≤, and for

common attribute A, c < a for a ∈ min dom(A,N(VNu
)).

(2) Applying o does not change the match set of any node

in Q. (3) o reduces the matches but does not exclude any

node in VNu
(see detailed proofs in [9]). �

Procedure Match. Given an operator set O ∈ O, Match

verifies query rewrite Q′=Q⊕O, by incrementally checking

whether each node v ∈ Q(uo, G) remains to be a match

of Q′, without computing entire Q′(uo, G) from scratch. It

early terminates whenever a subgraph isomorphism is found

for v, and updates cl(O) accordingly. If Q′ is disconnected,

Match simply retains the connected component Q′
uo

that

contains uo and performs the evaluation. Indeed, it is easy

to verify that Q′
uo
(uo, G) = Q′(uo, G) for any graph G.

Example 6: Continue with Example 5, given budget B =

4, and the picky set Os that contains o1, o2, o7, o3 and

o8, ExactWhy finds a MBS O′ {o1, o2, o3} with maximized

answer closeness 1. Indeed, (1) adding any operator leads

to cost beyond 4; (2) removing any operator (e.g., o3) leads

to smaller closeness (e.g., 0.5 as only A5 can be removed).

It thus returns Q2 = Q⊕O′ as in Fig. 1. �

Post processing. Algorithm ExactWhy can be further ex-

tended to compute an optimal set O′ that also minimizes

editing cost (bounded by B). To this end, for each MBS O
having maximized cl(O), it performs a post processing to

compute a set of minimal MBS that preserves the closeness

cl(O), by iteratively removing operators from O whenever

possible. Once all such minimal MBS are generated, it

chooses the one with the smallest cost (see details in [9]).

Correctness & Complexity. ExactWhy guarantees two

invariants below: (1) GenMBS correctly generates all MBSs

with picky operators (Lemma 4); and (2) ExactWhy cor-

rectly computes the MBSs with largest cl(·). By Lemma 3,

the correctness of ExactWhy follows.

We next analyze the time cost of ExactWhy. Define

the size |NdQ+1(Q(uo, G))| of NdQ+1(Q(uo, G)) as the

number of total literals and edges, similarly as the size |Q|.
(1) GenMBS generates a constant number of operators for

each literal and edge in NdQ+1(Q(uo, G)). It thus takes

O(|Q||NdQ+1(Q(uo, G))|) time to generate the picky set

Os, with size |Os| in O(|NdQ+1(Q(uo, G))|). (2) As any

operator has a cost at least
dQ

dQ+2 , any MBS has size no

larger than
B(dQ+2)

dQ
, further bounded by 3B for nontrivial Q

beyond a single output node (dQ ≥ 1). Thus at most |Os|
3B

MBS are verified, each takes at most |NdQ+1(VNu
)||Q| time.

The total time cost is thus in O(|Q||NdQ+1(Q(uo, G))| +
|Os|

3B |NdQ+1(VNu
)||Q|).

Under a practical assumption that B, dQ and |VNu
| are

small constants, ExactWhy is feasible in large G. Indeed,

96% of real-life SPARQL queries (a common subgraph

query language for entity search) contain up to 7 edges,

and 63% can be exactly verified in polynomial-time [28].
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B. Approximating Optimal Query Rewrites

Algorithm ExactWhy needs to find and verify every cost-

bounded sets and may be expensive. We can further reduce

the enumeration and verification cost by developing feasible

approximation algorithms. Our major result is as follows.

Theorem 5: There is an algorithm for answering Why ques-

tions which satisfies the following (O∗ is the optimal set):

◦ it computes an operator set O within cost B, such that

cl(O, VNu
) ≥ 1

2 · (1− 1
e
) · cl(O∗, VNu

) - 6Bε, and

◦ it incurs a cost determined by Q, VNu
and B only.

where ε is the absolute error it makes in estimating cl(·). �

That is, the algorithm guarantees a relative approxima-

tion ratio, in terms of an error ε between an estimated,

polynomial-time computable closeness and its exact coun-

terpart, for any query rewrites. If ε = 0,it is a constant factor

approximation. Moreover, as Q, |VNu
| and B are often small,

the algorithm is feasible for big G. To prove Theorem 5, we

next show that answering Why questions can be reduced to

a budgeted submodular maximization problem [29].

Submodularity. Given refinement operator set O, we define

the marginal gain of a refinement operator o to O as

mg(O, o) = cl(O⊕{o}) - cl(O). We first show the following

result, which can be easily verified by Lemma 1 (see [9]).

Lemma 6: Function cl(·) is submodular over picky set Os,

i.e., for any sets O1 and O2, such that O1 ⊂ O2 ⊂ Os, and

an operator o ∈ Os (o 
∈ O2), mg(O1, o) ≥ mg(O2, o). �

The above property holds for disconnected query rewrites.

Given Lemma 6, we can verify that finding optimal query

rewrites is to solve a budgeted submodular maximiza-

tion [29] problem. Given picky set Os and set VNu
, it

computes a set O ⊆ O, such that c(O) ≤ B, and cl(O, VNu
)

is maximized. It can be verified that a greedy algorithm

ensures a 1− 1
e

approximation by greedily selecting operators

with maximum mg [30], yet requires O(|Os|
2) subgraph

isomorphism test. We can do better: our algorithm only

verifies each picky operator once, and efficiently estimates

cl(·) for all the rest sets, with guarantees in Theorem 5.

Algorithm. The algorithm, denoted as ApproxWhy and

illustrated in Figure 4, has the following steps.

(1) It invokes a procedure GenPicky, which simulates the

first phase of GenMBS to only generate picky set Os (line

1). It then initializes sets O1 and O2 (lines 2-3), where O1 is

set as the single operator with best cl(·), verified by Match.

(2) It then iteratively selects a refinement operator o∗ from

O that maximizes the ratio of cost c(o∗) to an estimated

marginal gain m̂g(o∗) (lines 5-9). The latter refers to an

estimated number of the matches in VNu
that are removed

due to o∗, estimated by a procedure EstMatch The process

repeats until all the picky operators are processed.

Algorithm ApproxWhy

Input: graph G, query Q, cost bound B > 0,
a Why question W = (uo, VNu), integer m (guard condition);

Output: a query rewrite Q′ that answers W .

1. Os := GenPicky(Q,G, Vc, B);
2. set O1 := argmax{cl({o})} : o ∈ Os, c(o) ≤ B,

guard({o}) ≤ m };
3. set O2 := ∅;
4. O′

s = Os; V ′
Nu

:=VNu ;
/*greedy selection of refinement operators*/

5. while O′
s �= ∅ do

6. for o ∈ Os do m̂g(o) := ĉl(O2 ∪ {o})− ĉl(O2);

7. o∗ := argmax{ m̂g(o)
c(o)

: o ∈ Os};

8. if c(O2)+c(o
∗)≤B and guard(O2 ∪ {o∗}) ≤ m then

9. O2 := O2 ∪ {o∗}; O′
s := O′

s \ {o
∗};

10. O′ = argmaxOi∈{O1,O2} ĉl(Oi) ;
11. construct query rewrite Q′ = Q⊕O′;
12. return Q′;

Figure 4: Algorithm ApproxWhy

(3) It then set O’ as the set of O1 or O2, whichever has

larger estimated answer closeness. The query rewrite Q′ is

constructed with O′ and returned (lines 11-12).

Procedure EstMatch. Given operators O and operator o,

EstMatch estimates cl(O) and cl(O ∪ {o}) as ĉl(O) and

ĉl(O ∪ {o}), and computes m̂g(o) as ĉl(O ∪ {o}) - ĉl(O).
(1) For each picky operator o ∈ O, it first finds, once for all,

a set of affected nodes Aff (o) that are no longer matches of

Q due to o. This is doable as soon as cl(o) is computed.

(2) It then estimates Aff(VNu
), a fraction of VNu

that

becomes non-matches due to O. (a) Given O, it first sets

Aff(VNu
) =

⋃
o∈O(Aff(o)∩VNu

), i.e., all the non-matches of

u already identified by Aff(o). (b) It then extends Aff(VNu
)

and updates ĉl(O), by checking if the nodes in Aff(VNu
)

= VNu
\ Aff(VNu

) becomes a non-match. This is done by

consulting a path index that samples a bounded number of

paths from Q and verifies path matches (see [9]). The step

continues until all the nodes in Aff(VNu
) are processed.

Example 7: Consider the picky set Os in Example 5. Let O2

contains o3 = AddL(Cellphone.Price > $120). ApproxWhy

next greedily chooses o2 = AddL (Series.val=Serie:S), which

has maximized
m̂g(o2)
c(o2)

= 0.5. Other picky operators (e.g., o8
= AddL(Cellphone.Price > $250)) are not as good (e.g.,

m̂g(o8)=0) given o3, thus are not selected. �

Analysis. To see the approximation ratio, we construct a

reduction from answering Why question to the budgeted

submodular maximization with estimated marginal gain [29],

following the construction remarked earlier. Given estimated

marginal gain with absolute error ε′, cl(·) can be maximized

with guarantee 1
2 · (1 − 1

e
) · cl(O∗, VNu

)-(
B(dQ+2)

dQ
)ε′ by a

greedy selection, following [29]. ApproxWhy simulates the

greedy selection with an error 2·ε for estimating mg, thus en-

sures closeness at least 1
2 ·(1−

1
e
)·cl(O∗, VNu

)−2(
B(dQ+2)

dQ
)ε,

which is bounded by 1
2 ·(1- 1

e
)·cl(O∗, VNu

)- 6Bε (as dQ ≥ 1).
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It takes O(|Q||NdQ+1(Q(uo, G))|+|Os||NdQ+1(VNu
)||Q|)

time for initialization, following the analysis of ExactWhy.

It takes O(|N(dQ+1)(VNu
)|) time to estimate m̂g(o) for each

o. ApproxWhy is thus in total O(|Q||NdQ+1(Q(uo, G))| +

|Os||NdQ+1(VNu
)||Q| + |Os|

2|N(dQ+1)(VNu
)|) time.

The above analysis completes the proof of Theorem 5.

V. ANSWERING WHY-NOT QUESTIONS

We next study answering Why-not questions.

A. Computing Optimal Query Rewrites for Why-not

The first good news is that the sufficient and necessary

condition (Lemma 3) for Why questions has a counterpart

for Why-not questions. The only difference is that the

maximal bounded sets consist of relaxation operators only.

Lemma 7: Given query Q and cost bound B, a query rewrite

Q′=Q⊕O is optimal for a Why-not question, if and only if

O is a maximal bounded set with relaxation operators, and

has a maximum cl(O) among all maximal bounded sets. �

Our first algorithm, denoted as ExactWhyNot, takes a

partial enumeration and verification strategy, similarly as its

counterpart ExactWhy. The difference is that (1) it uses

a revised procedure GenMBS to generate a picky set of

relaxation operators and maximal bounded sets; and (2)

it invokes a revised Match to verify if the nodes in VCu

become new matches and the query rewrite satisfies the

guard condition, and enforce additional constraints in C.

We present the details of the revised procedure GenMBS.

Procedure GenMBS. Similar to its counterpart in

ExactWhy, procedure GenMBS follows two-step process

that first generates a picky set, and then verifies maximal

bounded sets, but consists of picky relaxation operators that

can include new matches in VCu
. It uses the following

similar notions. (1) Given a query node u′ in Q, we define

a set N(VCu
, u′) as the nodes in Nd(u′,u)(VCu

) having the

same label of u′. (2) The common attributes of a node u′ in

Q w.r.t. VCu
refers to all the node attributes in a literal of

Q that is also seen in a literal of a node from N(VCu
, u′).

Generating picky set. Procedure GenMBS inspects the can-

didates in N(VCu
, u′) for nodes u′ in Q to identify picky set

that enlarges candidates of u′. It uses the following rules.

Generating RxL. For each literal l= (u′.A op c) ∈ FQ(u
′)

of Q with common attribute u′.A, and each constant a ∈
dom(A,N(VCu

, u′)),
◦ if op ∈ {<,≤,=} and c ≤ a, add RxL(l, u′.A ≤ a);

◦ if op ∈ {>,≥,=} and c ≥ a, add RxL(l, u′.A ≥ a);

Generating RmL and RmE. GenMBS simply adds RmE(e)
(resp. RmL(l)) to O for each edge e and literal l in Q.

Once the set Os with a single operator is generated, it

continues to compute the maximal operator sets O with cost

bounded by B, until no new operator sets can be inserted.

The completeness of the picky set remains intact (see [9]).

Example 8: Given query Q and the Why-not question that

specifies VCu
as {S8, S9} (Figure 1), GenMBS generates Os

that include o1 = RxL(l, Cellphone.price $654), o2 = RxL(l,
Cellphone.price, $799), o3 = RmE(Cellphone, Color), and

o4 = RmL(Deal, carrier=AT&T ), among others, where l =

(Cellphone.price ≤ $650) is a literal from Q. For example,

as the active domain of price in VCu
contains {$654, $799},

it relaxes l with o1 and o2, which tries to include S8, and

both,respectively. Given B=4.2, a MBS {o2, o3, o4} with the

best closeness induces optimal query rewrite Q2. �

Correctness & Complexity. Following a similar analysis

of ExactWhy, the correctness of algorithm ExactWhyNot

follows from that GenMBS correctly computes complete

bounded maximal operator sets, and by Lemma 7 (see [9]).
For the complexity, it takes in total |Q||NdQ

(VCu
)| time to

generate Os, with size bounded by O(|Q||NdQ
(VCu

)|). The

largest maximal set has size bounded by
B(dQ+1)

dQ
, thus there

are at most |Os|
B(dQ+1)

dQ bounded maximal sets. The total

time is in O((|Q||Os|)
2B |NdQ

(VCu
)||Q|) (when dQ ≥ 1).

B. A Faster Heuristic
One may also consider approximation algorithms for

Why-not questions. Nevertheless, unlike Why questions, the

answer closeness under relaxation is no longer submodular,

and is hard to approximate even with a value oracle that

reports cl(·) [30]. We thus resort to fast heuristic algorithms.

Algorithm. The general idea is to compute query rewrites

by solving a budgeted maximum cover problem. Given picky

set Os and VCu
, it computes an operator set O ⊆ Os with

estimated matches that maximally “cover” VCu
.

The algorithm, denoted as FastWhyNot (see [9]), per-

forms the following. (1) It invokes a procedure GenPicky to

generate picky operators Os as in GenMBS, and initializes

a working set O′. (2) It then iteratively selects an operator

o∗ from Os that (1) satisfies the guard condition, and (2)

maximizes the ratio of c(o∗) to estimated marginal gain

m̂g(o∗) (estimated by a revised EstMatch) similarly as

in ExactWhy, and constructs Q′ with greedily selected O′.

Revised EstMatch. Given relaxation operator O, EstMatch

estimates cl(O) by estimating new matches from VCu
in-

troduced by O. It traces back to GenPicky and finds nodes

Aff(o) that are potential new matches for each o. It then

performs similar sampled path tests for each node v ∈ VCu
,

by consulting the path index at run-time. The difference is

that it considers v to be an estimated match, only when it

passes all tests, and has matched paths that contain only

matches in Q(uo, G) and Aff(o). It treats all such node as

the new matches, and update ĉl(·) accordingly (see [9]).

Time cost. FastWhyNot takes in total O(|Q||NdQ
(VCu

)|+
(|Os|)

2|NdQ
(VCu

)|) time to compute picky set Os and per-

forms greedy selection. We found that it is much (15 times)

faster than ExactWhyNot, without losing much quality of

optimal query rewrites (at least 80% as good).
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Extensions. Our algorithms can be readily extended to

support (1) answering multiple Why-questions that involve

multiple output nodes in Q, with provable performance guar-

antees; (2) Why-empty (resp. Why-so-many) [21] questions,

which are special cases of Why-not (resp. Why) questions

without specifying VCu
(resp. VNu

), but compute Q′ that

returns at least a match (reduces certain number of matches);

and (3) Subgraph queries defined by approximate pattern

matching [4], [5]. We present the details in [9].

VI. EXPERIMENT

Using real-world graphs, we next experimentally verify

the effectiveness and efficiency of our algorithms for an-

swering why-questions (see [9] for more results).

Experiment Setting. We used the following setting.

Datasets. We use five real-life graphs: (1) DBpedia2 consists

of 4.86M entities, 15M edges, 676 labels (e.g.,Person,

Building), and on average 9 attributes per node, (2) Yago3,

with 1.54M nodes and 2.37M edges (sparser compared to

DBpedia), but with more diversified (324343) labels and on

average 5 attributes per node, (3) Freebase (version 14-04-

14)4, with 40.32M entities and on average 8 attributes per

node, 63.2M relationships, and 9630 labels; (4) Pokec5, a so-

cial network with 1.6M users, 30.6M edges and 60 attributes

per node; and (5) IMDb6, with 1.7M nodes (e.g.,movies),

5.2M edges,and on average 6 attributes per node.

We also use BSBM7 e-commerce benchmark to generate

synthetic knowledge graphs over products with different

number of nodes (up to 50M ) and edges (up to 126M ),

and labels drawn from an alphabet of 3080 labels.

Query & Question generation. We developed a query gen-

erator, which generates queries controlled by query size

|Q| and topologies (trees, acyclic, cyclic), as follows: (1)

it randomly picks a set of keywords as types and generate

summaries [5] as query templates; (2) for each template, it

randomly selects a query node u as the output node; (3) from

the isomorphic subgraphs of the query template, we assign

a set of attributes for each query node to ensure non-empty

Q(uo, G). To generate Why questions, we randomly select a

set of nodes in Q(uo, G) as VNu
. For Why-not questions, we

select VCu
with the same type as uo and randomly associate

each question with a constraint C that has up to 2 literals.

By default, we set Q to contain 4 edges, 2 literals per

node, both |VCu
| and |VNu

| to 3, editing budget B = 4, and

m = 2 for guard conditions, unless otherwise specified.

Algorithms. We implemented the following in Java. (1) For

Why questions, we compare the approximation algorithm

ApproxWhy with its exact counterpart ExactWhy, and its

2http://dbpedia.org
3http://www.mpi-inf.mpg.de/yago
4http://freebase-easy.cs.uni-freiburg.de/dump/
5https://snap.stanford.edu/data/soc-pokec.html
6https://www.imdb.com/interfaces/
7http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

variant IsoWhy, which uses subgraph isomorphism Match

instead of EstMatch, thus ensures ε=0. (2) For Why-not

questions, we compare FastWhyNot with the exact algo-

rithm ExactWhyNot, and its variant IsoWhyNot, which

applies exact Match to compute the marginal gain.

We ran all our experiments on a Linux machine powered

by an Intel 2.4 GHz CPU with 128 GB of memory. We

ran each experiment 10 times, each batch with 50 Why-

questions, and report the averaged results.

Experimental results. We next present our findings.

Exp-1: Effectiveness (Why Questions). We first evaluate

the effectiveness of our algorithms, including ExactWhy,

ApproxWhy and IsoWhy, for answering Why questions. We

measure their effectiveness by the absolute answer closeness

over all real-world datasets. We also ensure known optimal

cases with closeness ≈ 1, as a reference for ExactWhy.

Figure 5(a) tells us the following. (1) The exact algorithm

ExactWhy always reports the optimal query rewrite. (2)

With estimated closeness (EstMatch), ApproxWhy computes

good query rewrites that have closeness at least 85% to their

optimal counterpart, in all cases. (3) Replacing EstMatch

with Match improves the quality of query rewrites (up to

0.08). These verify the quality guarantees of ExactWhy

and ApproxWhy. Moreover, EstMatch is quite accurate

(ε ≤ 0.02 on average).

Varying query size. Varying number of edges |EQ| from 1 to

8, and number of literals L per node from 2 to 3, we report

the effectiveness of our algorithms over Yago in Figure 5(b).

(1) Under a fixed budget (B = 4), the closeness decreases

given more edges and literals in Q, for all the algorithms. We

found that it often requires more budget for larger |Q|, due

to increased query complexity from topology and literals. (2)

ApproxWhy preserves 85% of the optimal closeness in all

cases. It approximates ExactWhy better for small queries,

as EstMatch is more accurate over small queries.

Varying cost budget B. As shown in Figure 5(c) (over Yago),

the answer closeness of all three algorithms increase when

given larger cost budget B. The closeness converges at small

B (B = 4), which indicates that it often requires a small

modification to Q to answer why questions in practice.

Varying |VNu
|. We evaluate the impact of |VNu

| under a

fixed cost budget (B = 4). We simulate interactive sessions

for asking Why questions, which enlarges VNu
by adding

entities to it only, and varies |VNu
| from 1 to 5. As shown

in Figure 5(d), under a fixed budget, it is “harder” to exclude

more nodes as VNu
grows, as more operators are needed;

On the other hand, all our algorithms still provide reasonable

query rewrite with closeness at least 0.68.

Exp-2: Efficiency (Why Questions). Using the same setting

in Exp-1, we report the efficiency of our algorithms for

answering why questions. Figure 6(a) verifies that it is

feasible to answer why questions for large graphs. On
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Figure 5: Answering Why questions: Effectiveness

average, ApproxWhy outperforms ExactWhy and IsoWhy,

by 9.7 times and 7.7 times, respectively. It takes on average

7 seconds to achieve near optimal results ExactWhy takes

on average 71 seconds to ensure optimal query rewrites.

Scalability. Figure 6(b) reports the performance on synthetic

graphs using the same set of Why-questions. The result

shows that ApproxWhy scales well with |G|, and improves

ExactWhy and IsoWhy better when |G| becomes larger.

Figure 6(c) evaluates the impact of query size, by varying

|EQ| and literals per node (L) of Q. (1) While all algorithms

take longer for larger queries as more operators and nodes

need to be inspected, they are quite feasible: it takes up to

3.3 minutes for queries with 6 edges and 12 literals. (2)

ApproxWhy is less sensitive to |EQ| and L. In all cases, it

takes up to 39 seconds, and is on average 8.7 and 6.8 times

faster than ExactWhy and IsoWhy.

Varying query topologies. Figure 6(d) tells us that answering

Why questions posed on tree queries are in general more

efficient than those on acyclic or cyclic queries, as simpler

topologies reduce the cost of recursive verification.

Varying cost budget B. Varying budget B from 1 to 5,

Figure 6(e) shows that all the algorithms take longer time

to consume larger budget. ApproxWhy is the least sensitive

one, due to its reduced verification cost with estimated

closeness. Note that the costs of ExactWhy and IsoWhy do

not necessarily grows exponentially with B, due to that for

larger B, they both have higher chance to early terminate.

Varying |VNu
|. As shown in Figure 6(f), under the same B,

larger |VNu
| induces larger picky sets and more matches to

be verified (with Match or EstMatch) and removed from

the result, consistent with our complexity analysis.

Exp-3: Effectiveness (Why-Not Questions). Figure 7(a)

reports the closeness of query rewrites generated from

ExactWhyNot, FastWhyNot and IsoWhyNot. We find the

following. (1) Under small budget B = 4, ExactWhyNot can

already cover almost all VCu
(average closeness > 0.95). (2)

While FastWhyNot reports answer closeness not as good, it
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Figure 7: Answering Why-not questions: Effectiveness

achieves a quite good result, with answer closeness at least

84% of the optimal counterparts, for all the cases.

Varying size |Q|. We evaluate the impact of |Q| to the

effectiveness in Figure 7(b), varying |EQ| from 1 to 8 and

average literal per node L from 2 to 3. The closeness of

all computed query rewrites decreases as Q becomes larger,

which is consistent with its counterpart for Why questions

(Fig. 5(b)). Indeed, it is more likely to cover matches for

small queries given a fixed budget, and EstMatch is also

more accurate. In general, it incurs an error ε ≤ 0.04.

Varying B and |VCu
|. The result is consistent with the results

for Why questions. We present more details in [9].

Exp-4: Efficiency (Why-not Questions). Figure 8(a) shows

that it takes on average 2 minutes, 100 seconds and 8.8
seconds for ExactWhyNot, IsoWhyNot and FastWhyNot to

answer a Why-not question with 3 missing matches under

cost budget B = 4. FastWhyNot is 15.7 times and 11 times

faster than ExactWhyNot and IsoWhyNot, respectively, and

computes query rewrites with good answer closeness.

Figure 8(b) verifies that FastWhyNot scales well with |G|
and |EQ|. In all cases, it takes less than 30 seconds, and

improves ExactWhyNot and IsoWhyNot better for larger

|G|. We report more efficiency results in [9].
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Exp-5: Case Analysis. We also verify the application of our

algorithms in knowledge exploration, with two cases below.
Knowledge exploration. A query Q3 (Fig. 9 (a), in black),

is posed on DBpedia, which aims to find U.S companies

acquired by Google since 2013, at a price more than $500M
and integrated with Google Map. While a single company

{Skybox Imaging} is returned, a user wonders why Urban

Engines and Waze, are not among the results.

(1) Given “Why-not Urban Engines?”, FastWhyNot rewrites

Q3 to Q′
3, which successfully returns Urban Engines, by

removing the price constraint (crossed by red line). Interest-

ingly, it turns out that no price was reported for this entity

in DBpedia, indicating a data quality issue (missing facts).

(2) Given ”Why-not Waze?”, FastWhyNot further removes

country name USA and returns Waze. A closer look at

the facts reveals that it was originally founded in Israel,

providing a new fact to the user for her future investigation.
“Why-so-many?”. A second query Q4 (Fig. 9 (b)) on IMDB

searches for actors who co-played with William Shatner in

at least two movies with reasonable ratings no earlier than

2001. This query returns, surprisingly, more than 6, 200
actors. The user asks a follow-up “Why-so-many” question,

with a hope to retain at most 100 actors. In response,

ApproxWhy revises Q4 by narrowing down the movies

release dates, increasing the rating, and introducing genre

Comedy. These operators refine the result to 27 actors. It

turns out that many actors considered as co-players only

co-attended the talk-shows, which are (not very accurately)

labeled as “movies”, if no genre is specified by ApproxWhy.

VII. CONCLUSIONS

We have formalized the problem of answering Why-

questions for subgraph queries. We have shown that these

problems are in general intractable. We have developed

feasible algorithms, from exact and approximation to fast

heuristics, with properties such as relative approximation

ratio, and early termination. As verified by our experimental

study, our methods and their extensions are efficient and

report useful explanations. One future topic is to enable trade

off between query cost and closeness for exploratory graph

search. Another topic is to explore the applications of our

methods for graph sensemaking and visualized querying.
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