
Answering Why-Questions for Subgraph
Queries in Multi-Attributed Graphs

Qi Song1 Mohammad Hossein Namaki1 Yinghui Wu1,2

1 2

Introduction

§ Multi-attributed graphs and entity search based on subgraph queries
─ Subgraph query Q: a (labeled) graph pattern with an output node uo;

─ Answer of Q refers to entities that are matches of uo (Q(uo, G)).

Social Network:
POI Recommendation

Knowledge Graph:
Knowledge Extraction

Protein Network:
Medical Analysis

1

Why-questions

§ Writing queries is nevertheless a nontrivial task for end users.

─ The graph is large and heterogeneous;

─ Users often need to revise the queries multiple times to find desirable answers.

─ An explain functionality supported by query rewriting is thus desirable to help users understand the
unexpected answers.

§ Why-questions.

─ Why question: “why some (unexpected) entities are in the query answer?”; and

─ Why-not question: “why certain entities are missing from the query result?”

§ Answering Why-questions helps users to tune their queries towards desirable answers.

2

Example

§ Example: a knowledge graph G about products of an online store

Cellphone
Model: A5
Price: $250

Cellphone
Model: S6
Price: $289

Cellphone
Model: S9
Price: $799

Color
val: Pink

Color
val: Black

Company
name: Samsung

Deal
Discount: 8%
Carrier: AT&T

Deal
Discount: 20%
Carrier: Verizon

Graph G

3

Example

Graph G Query Q

? Cellphone
Price ≤ $500

Deal
Carrier=AT&T

Company
name=Samsung

Color
val=Pink Matches: {A5, S6}

§ A user wants to search for Samsung cellphones packed with color pink and carrier AT&T ,
with price less than $500.

Cellphone
Model: A5
Price: $250

Cellphone
Model: S6
Price: $289

Cellphone
Model: S9
Price: $799

Color
val: Pink

Color
val: Black

Company
name: Samsung

Deal
Discount: 8%
Carrier: AT&T

Deal
Discount: 20%
Carrier: Verizon

3

Example

Graph G Query rewrite Q1

? Cellphone
Price ≤ $500
Price > $250

Deal
Carrier=AT&T

Company
name=Samsung

Color
val=Pink

Matches: {A5, S6}

§ “why model A5 is in the query result of Q ?”

Cellphone
Model: A5
Price: $250

Cellphone
Model: S6
Price: $289

Cellphone
Model: S9
Price: $799

Color
val: Pink

Color
val: Black

Company
name: Samsung

Deal
Discount: 8%
Carrier: AT&T

Deal
Discount: 20%
Carrier: Verizon

3

The user may not be interested in cheaper versions as
a new lower bar of price $250 is added.

Matches: {S6, S9}

Example

Graph G

? Cellphone
Price ≤ $500 $799

Price > $250

Deal
Carrier=AT&T

Company
name=Samsung

Color
val=Pink

§ “why model S9 are not in the query result ?”

Cellphone
Model: A5
Price: $250

Cellphone
Model: S6
Price: $289

Cellphone
Model: S9
Price: $799

Color
val: Pink

Color
val: Black

Company
name: Samsung

Deal
Discount: 8%
Carrier: AT&T

Deal
Discount: 20%
Carrier: Verizon

3

Query rewrite Q2

S9 is more expensive than expected (price relaxed to
$799), there is no Pink S9 model, and no S9 model is
supported by AT&T.

Contributions

§ The need of answering Why-questions is evident in exploratory graph search.

§ Contributions
─ We formalize Why-questions for subgraph queries in terms of graph query rewrites.

─ We formalize the problem of answering Why-questions.

─ We develop both exact and approximation algorithms.

─ We experimentally verify the effectiveness and efficiency of our algorithms.

Subgraph
query Q Q(G)

query
evaluation

Graph G

Query
rewrite Q’

Why not?
“missing entities”

“unexpected entities”
Why?

Answering Why-questions
(this work)

4

Problem Formulation

§ Categorization of Why-Questions.
─ Why-not: why the nodes in VCu , with attribute values that satisfy the value constraints in C (if not

empty), are not matches of u of Q?

─ Why: why the nodes in VNu are included as matches for uo in G?

5

!", $%&, '
Output node of Q. A set of ”missing matches” of uo. Selection condition

?Cellphone {S9} {Cellphone.OS ≥ 5.0}

!", $(&
Output node of Q. A set of ”unexpected matches” of uo.

?Cellphone {A5}

Problem Formulation

§ Answers for Why-Questions
─ Query rewrites: six classes of primitive query editing operators

─ Answering Why-Questions: a query rewrite !’ = !⨁% is an answer of a

6

?Cellphone
Price ≤ $500 $799

Deal
Carrier=AT&T

?Cellphone
Price ≤ $500

Deal
Carrier=AT&T

?Cellphone
Price ≤ $500 $300

Price > $250

Deal
Carrier=AT&T

Remove literal

Relax literal Add literal

Remove edge X

Relaxation Refinement

Refine literalColor

Add edge

!('(, *),-.

!′('(, *)

• Why: Q′ excludes at least one unexpected
match v ∈ ,-. .

• Why-not: !′('(, *) contains at least one
“missing” match in ,1. that satisfies C.

v

!′('(, *),1.

!('(, *)v

Problem Formulation

§ Query editing cost: operators that modify more “important” fraction (closer to uo) should be
more expensive.

§ Answer closeness: between ! "#, % and !′("#, %)

oc u,, "# = ./
. ",, "# + 1

Based on output centrality of node u’

7

?Cellphone
Price ≤ $500
Price > $250

Deal
Carrier=AT&T

Company
name=Samsung

cost: 0.5

cost: 1

!("#, %)234

!′("#, %)

!′("#, %)254

!("#, %)

• Why: the fraction of 234 that are excluded
from Q, "#, % .

• Why-not: the fraction of new matches in
254 that are introduced in Q, "#, % .

Guard condition: avoid over-refinement
or over-relaxation

cl 9, 234 = |(!("#, %)\Q′("#, %))⋂234|
|234|

cl 9, 254 = |(Q′("#, %))⋂254|
|254|

Problem Formulation

§ Problem statement
─ Given a query Q, answer Q(#$, &), graph G, a Why-question W, editing budget B,

─ Compute a query rewrite Q(= Q⨁+∗, such that

─ The problem of answering Why and Why-not questions are both NP-hard.

+∗ = argm12
3:5(3)67

89(+, :;)

8

Answering Why Questions

§ Computing optimal query rewrites
─ Maximum bounded set (MBS): with !(#) ≤ & and all of its superset has cost exceeds B.

─ An exact algorithm (ExactWhy):

• Time cost: #(' ()*+, ' -., 0 + |#3|45|()*+,(678)||9|).

9

Generate picky
operators Generate MBS Verify answer

closeness
Select O that

maximize cl(O)

o1 = AddE (…)

o2 = AddL(…)

……

oi = RfL(…)

cl(O1) = 0.5

cl(O2) = 1.0

……

cl(Oj) = 0.8

return Q; = Q⨁#>

∅

{A,} {A>} {AC}…

{A,, A>} {A,, A4} {A>, AD}…

{A,, A>, A4} {A,, A4, AD} …

O1

O2 O3

Answering Why Questions

§ Approximating optimal query rewrites
─ Given refinement operator set O, the marginal gain of an operator o to O: !" #, % = '(#⨁{%} − '((#);
─ Function '(/ is submodular over picky set Os;

─ An approximation algorithm ApproxWhy:

• Approximation ratio: 0
1
/ 1 − 0

3
/ '(#∗, 567 − 69:;

• Time cost: #(< =>?@0 < AB, C + |#F| =>?@0 567
G
+ |#F|1 =>?@0 567).

10

Generate picky
operators Estimate H!"(%) Output O that

maximize cl(O)

o1 = AddE (…)

o2 = AddL(…)

……

oi = RfL(…)

return QJ = Q⨁#

Iteratively select o
with maximize

HKL(B)
M(B)

∅

{%0} {%1} {%O}…

{%0, %1} {%1, %P} {%1, %Q}…

{%0, %1, %P} {%1, %P, %Q} …

Answering Why-not Questions

§ Computing optimal query rewrites (ExactWhyNot):
─ Following the similar manner with ExactWhy but with MBS contains only relaxation operators;

─ Time cost: !(|$||!%|&'|()*(+,-)||/|).

§ A faster heuristic
─ Function 01 2 is not submodular for relaxation operators;

─ Following the similar manner with ApproxWhy

─ Time cost: !($ ()* +,- + |!%|& ()* +,-).

§ Why-empty and Why-so-many
─ Why the answer set is empty? Special cases of Why-not without specifying +,- ;

─ Why there exist so many answers? Special cases of Why-not without specifying +4- ;

11

§ Dataset

§ Query & Question generation
─ Generate queries controlled by query size and topologies.
─ Randomly select a set of nodes in ! "#, % as &'(, randomly select &)(with the same type of "# .

§ Algorithms
─ Why: ExactWhy, ApproxWhy, IsoWhy;
─ Why-not: ExactWhyNot, FastWhyNot, IsoWhyNot.

Experiment Setting

Dataset Description # of nodes # of edges # of attributes per node

DBPedia Knowledge Graph 4.86M 15M 9

Yago Knowledge Graph 1.54M 2.37M 5

Freebase Knowledge Graph 40.32M 63.2M 8

Pokec Social Network 1.6M 30.6M 60

IMDb Movie Network 1.7M 5.2M 6

BSBM E-commerce Synthetic

12

Experiment Result

§ Answering Why questions: Effectiveness

§ Answering why questions: Efficiency

Answer closeness: ApproxWhy achieves at least 85% to
their optimal counterpart

Varying cost budget B: it often requires a small B to
answer why questions in practice.

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5

C
lo

se
ne

ss

ExactWhy
IsoWhy

ApproxWhy

Efficiency: ApproxWhy outperforms ExactWhy and
IsoWhy, by 9.7 times and 7.7 times on average

Varying graph size: for practical query with 5 edges, it
takes 8.7 seconds to answer a why question.

0.5

0.6

0.7

0.8

0.9

1.0

Yago DBpediaFreebase Pokec IMDb

C
lo
se
ne
ss

ExactWhy
IsoWhy

ApproxWhy

 1

 10

 100

Yago DBpediaFreebase Pokec IMDb

Ti
m

e
(s

ec
on

ds
)

ExactWhy
IsoWhy

ApproxWhy

 0

 100

 200

 300

 400

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
o

n
d

s)

ApproxWhy(L=2)
IsoWhy(L=2)

ExactWhy(L=2)
ApproxWhy(L=3)

IsoWhy(L=3)
ExactWhy(L=3)

13

B

|E|

Experiment Result

§ Answering Why-not questions:

Answer closeness: ApproxWhyNot achieves at least 84%
to their optimal counterpart.

Efficiency: FastWhyNot is feasible, it takes in average 9
seconds to answer a why-not question.

Company?

acq. price ≥ 500M
acq. year ≥ 2013

Product
name:Google Map

Company

name:Google
Country

name:USA

integrated with
acquired by

locatedAt ownedBy

played in

(a) (b)Query Q3 Query Q4

lang="en"

year < 2013
rating ≥ 1.0 8.2

year ≥ 2001 2007Actor?

Actor
name: William Shatner

MovieMovie

lang="en"

year < 2013
year ≥ 2001 2007

rating ≥ 1.0 8.2 Genre
Comedy

hasGenre

(a) Business inquiry:
• Answer: {Skybox Imaging}
• Why-not Urban-Engines and Waze?
• No price was reported for Urban-
Engines and Waze was founded in Israel.

14

0.5

0.6

0.7

0.8

0.9

1.0

Yago DBpediaFreebase Pokec IMDb

C
lo
se
ne
ss

ExactWhyNot
IsoWhyNot

FastWhyNot

Video Games?

CompanySoftware

platform

(a) Query Qa (b) Query Qb

name= Windows

release date ≥ 2003
genre= 1st person shooter

developed

Laptop?

CompanyGPU-Brand

storage = 512GB

producedBy

display = 15"

name = Apple name = NVidia

2

(b) Product recommendation:
• Answer: {}; (Why-empty)
• MacBook is powered by either Intel
or AMD GPU.

§ Case study:

§ Answering Why-Questions for subgraph queries in multi-attributed graphs
─ We have formalized the problem of answering Why-questions for subgraph queries.

─ We have developed feasible algorithms, from exact and approximation to fast heuristics.

§ Following up work (Answering Why-Questions by Exemplars – SIGMOD 2019)
─ Instead of missing/unexpected entities, users input a set of exemplars;
─ Q-Chase, an extension of Chase to characterize graph query rewriting under constraints;

─ Feasible Q-Chase-based algorithms to compute optimal query rewrites (using star views);

─ NAVIGATE: Explainable Visual Graph Exploration by Examples (Demo system).

Conclusion

Sponsored by:

15

Thank you!

