

Answering Why-Questions for Subgraph Queries in Multi-Attributed Graphs

Qi Song¹ Mohammad Hossein Namaki¹ Yinghui Wu^{1,2}

2

Pacific Northwest

- Multi-attributed graphs and entity search based on subgraph queries
 - Subgraph query Q: a (labeled) graph pattern with an output node u_o ;
 - Answer of Q refers to entities that are matches of u_o (Q(u_o , G)).

Social Network: POI Recommendation

Knowledge Graph: Knowledge Extraction

Protein Network: Medical Analysis

- Writing queries is nevertheless a nontrivial task for end users.
 - The graph is large and heterogeneous;
 - Users often need to revise the queries multiple times to find desirable answers.
 - An explain functionality supported by query rewriting is thus desirable to help users understand the unexpected answers.

- Why-questions.
 - Why question: "why some (unexpected) entities are in the query answer?"; and
 - Why-not question: "why certain entities are missing from the query result?"
- Answering Why-questions helps users to tune their queries towards desirable answers.

• Example: a knowledge graph G about products of an online store

Example

A user wants to search for Samsung cellphones packed with color pink and carrier AT&T, with price less than \$500.

"why model A5 is in the query result of Q?"

"why model **S9** are not in the query result ?"

• The need of answering Why-questions is evident in exploratory graph search.

- Contributions
 - We formalize Why-questions for subgraph queries in terms of graph query rewrites.
 - We formalize the problem of answering Why-questions.
 - We develop both exact and approximation algorithms.
 - We experimentally verify the effectiveness and efficiency of our algorithms.

- Categorization of Why-Questions.
 - Why-not: why the nodes in V_{Cu} , with attribute values that satisfy the value constraints in C (if not empty), are not matches of u of Q?

- Answers for Why-Questions
 - Query rewrites: six classes of primitive query editing operators

- Answering Why-Questions: a query rewrite $Q' = Q \oplus O$ is an answer of a
 - Why: Q' excludes at least one unexpected match $v \in V_{N_u}$.

$$V_{N_u}$$
 $Q(u_o, G)$
 $Q'(u_o, G)$

• Why-not: $Q'(u_o, G)$ contains at least one "missing" match in V_{C_u} that satisfies C.

Why-not: the fraction of new matches in

Query editing cost: operators that modify more "important" fraction (closer to u_o) should be more expensive.

- Answer closeness: between $Q(u_o, G)$ and $Q'(u_o, G)$
 - Why: the fraction of V_{N_u} that are excluded from $Q'(u_o, G)$.

Guard condition: avoid over-refinement or over-relaxation

Problem Formulation

- Problem statement
 - Given a query Q, answer $Q(u_o, G)$, graph G, a Why-question W, editing budget B,
 - Compute a query rewrite $Q' = Q \oplus O^*$, such that

$$O^* = \underset{O:c(O) \le B}{\operatorname{argmax}} cl(O, V_u)$$

- The problem of answering Why and Why-not questions are both NP-hard.

Answering Why Questions

- Computing optimal query rewrites
 - Maximum bounded set (MBS): with $c(0) \le B$ and all of its superset has cost exceeds B.
 - An exact algorithm (ExactWhy):

• Time cost: $O(|Q| |N_{dQ+1}(Q(u_o, G))| + |O_s|^{3B} |N_{dQ+1}(V_{N_u})|^{|Q|}).$

- Approximating optimal query rewrites
 - Given refinement operator set O, the marginal gain of an operator o to O: $mg(0, o) = cl(0 \oplus \{o\}) cl(0)$;
 - Function $cl(\cdot)$ is submodular over picky set O_s ;
 - An approximation algorithm ApproxWhy:

• Approximation ratio: $\frac{1}{2} \cdot \left(1 - \frac{1}{e}\right) \cdot cl(O^*, V_{N_u}) - 6B\varepsilon;$

• Time cost: $O(|Q| |N_{dQ+1}(Q(u_o, G))| + |O_s| |N_{dQ+1}(V_{N_u})|^{|Q|} + |O_s|^2 |N_{dQ+1}(V_{N_u})|).$

Answering Why-not Questions

- Computing optimal query rewrites (ExactWhyNot):
 - Following the similar manner with ExactWhy but with MBS contains only relaxation operators;
 - Time cost: $O(|Q||O_s|^{2B}|N_{d_Q}(V_{C_u})|^{|Q|}).$
- A faster heuristic
 - Function $cl(\cdot)$ is not submodular for relaxation operators;
 - Following the similar manner with ApproxWhy
 - Time cost: $O(|Q| |N_{d_Q}(V_{C_u})| + |O_s|^2 |N_{d_Q}(V_{C_u})|).$
- Why-empty and Why-so-many
 - Why the answer set is empty? Special cases of Why-not without specifying $V_{C_{\mu}}$;
 - Why there exist so many answers? Special cases of Why-not without specifying $V_{N_{\mu}}$;

Dataset

Dataset	Description	# of nodes	# of edges	# of attributes per node
DBPedia	Knowledge Graph	4.86M	15M	9
Yago	Knowledge Graph	1.54M	2.37M	5
Freebase	Knowledge Graph	40.32M	63.2M	8
Pokec	Social Network	1.6M	30.6M	60
IMDb	Movie Network	1.7M	5.2M	6
BSBM	E-commerce	Synthetic		

Query & Question generation

- Generate queries controlled by query size and topologies.
- Randomly select a set of nodes in $Q(u_o, G)$ as V_{N_u} , randomly select V_{C_u} with the same type of u_o .
- Algorithms
 - Why: ExactWhy, ApproxWhy, IsoWhy;
 - Why-not: ExactWhyNot, FastWhyNot, IsoWhyNot.

Answering Why questions: Effectiveness

Answer closeness: ApproxWhy achieves at least 85% to their optimal counterpart

Varying cost budget *B*: it often requires a small *B* to answer why questions in practice.

Answering why questions: Efficiency

Efficiency: ApproxWhy outperforms ExactWhy and IsoWhy, by 9.7 times and 7.7 times on average

Varying graph size: for practical query with 5 edges, it takes 8.7 seconds to answer a why question.

• Case study:

(a) Business inquiry:
ogle Map
Answer: {Skybox Imaging}
Why-not Urban-Engines and Waze?
No price was reported for Urban-Engines and Waze was founded in Israel.

(b) Product recommendation:

- Answer: {}; (Why-empty)
- MacBook is powered by either Intel or AMD GPU.

- Answering Why-Questions for subgraph queries in multi-attributed graphs
 - We have formalized the problem of answering Why-questions for subgraph queries.
 - We have developed feasible algorithms, from exact and approximation to fast heuristics.
- Following up work (Answering Why-Questions by Exemplars SIGMOD 2019)
 - Instead of missing/unexpected entities, users input a set of exemplars;
 - Q-Chase, an extension of Chase to characterize graph query rewriting under constraints;
 - Feasible Q-Chase-based algorithms to compute optimal query rewrites (using star views);
 - NAVIGATE: Explainable Visual Graph Exploration by Examples (Demo system).

Sponsored by:

