
Explaining Missing Data in Graphs: A
Constraint-based Approach

Qi Song*
Amazon.com

qison@amazon.com

Peng Lin
Washington State University

peng.lin@wsu.edu

Hanchao Ma
Case Western Reserve University

hxm382@case.edu

Yinghui Wu
Case Western Reserve University

Pacific Northwest National Laboratory
yxw1650@case.edu

Abstract—This paper introduces a constraint-based approach
to clarify missing values in graphs. Our method capitalizes
on a set Σ of graph data constraints. An explanation is a
sequence of operational enforcement of Σ towards the recovery
of interested yet missing data (e.g., attribute values, edges). We
show that constraint-based approach helps us to understand not
only why a value is missing, but also how to recover the missing
value. We study Σ-explanation problem, which is to compute
the optimal explanations with guarantees on the informativeness
and conciseness. We show the problem is in ∆P

2 for established
graph data constraints such as graph keys and graph association
rules. We develop an efficient bidirectional algorithm to compute
optimal explanations, without enforcing Σ on the entire graph.
We also show our algorithm can be easily extended to support
graph refinement within limited time, and to explain missing
answers. Using real-world graphs, we experimentally verify the
effectiveness and efficiency of our algorithms.

Index Terms—Graphs, Data Constraints, Data Provenance

I. INTRODUCTION

Real-world graphs are incomplete [1]: attribute values of en-
tities (nodes) and relations (edges) are often missing. Enhanc-
ing graphs from multiple data sources with entity matching
and link prediction has been widely studied [1]. A desirable
yet missing functionality is to clarify why certain expected data
is missing in graph data, whether such data can be restored,
and how. Such need is evident in knowledge fusion [2], user-
centric data quality [3], and query suggestion [4].

Missing data in a graph G can be captured by data con-
straints for graphs [5]–[9]. These data constraints identify
node pairs (v, v′) in G via graph pattern matching between
a graph pattern P and a graph G, and either enforce node
equivalence or assert a missing edge between v and v′.
Consider the following established data constraints for graphs.

(1) Key constraints [6], [10], [11] have a general form of
P → (u.id = u′.id), and state that “A pair of nodes v and v′ in
a graph G should refer to the the real-world entity (id), if they
both match a graph pattern P via graph pattern matching”.

For example, graph keys [6] state that “any pair of nodes
in a graph that match to a designated pattern node in a graph
pattern P should refer to the same entity”, where P is defined
by variants of subgraph isomorphism [6], [9], [11].

(2) Constraints that infer missing edges P → r(u, u′) [5],
[12]–[14] state that “There is an edge between a pair of nodes

*This job was done prior to joining Amazon.

Fig. 1: Clarifying “why the statement ‘R.Feynman is known for
physics’ is missing?” with graph data constraints.

v and v′ in G with label r, if v and v′ both match P via
graph pattern matching”. Notable examples include AMIE [5]
(where P are Horn clauses), conditional patterns [14], and
graph association rules [12], [13] where the matching seman-
tics of P are defined by variants of subgraph isomorphism.

Can these data constraints be used to explain why spe-
cific data of interests is missing in a graph? Naturally, data
constraints may provide useful provenance information by
inferring new data [15]. Consider the following example.

Example 1: A fraction of a curated academic knowledge graph
G is illustrated in Fig 1 (excluding dashed edges and colored
attributes). Each node (e.g., v1) refers to an entity with a label
(e.g., a type scientist), and a tuple that maps attributes to
their values (e.g.,name = ‘R.Feynman’). Each edge encodes
a relation between two nodes, e.g., ‘R.Feynman’ was born in
(bornIn) ‘U.S.’. For the ease of discussion, we decompose G
into components G1 and G2 with a shared node v1.

There are two validated graph data constraints defined on G:
a graph key ϕ1 with graph pattern P1, and a graph association
rule ϕ2 with pattern P2 (Fig. 1), which state the following.

ϕ1 [6]: “two scientists refer to the same person (u1.id =
u′1.id), if they have the same name, birth date, and were
born in (bornIn) the same country”(u4.val = u5.val).

ϕ2 [12], [13]: “a scientist (u2) was born in a country (u′2)
if the scientist was born in a city (u6) which is located in
(locatedIn) that country (u′2).”

1476

2021 IEEE 37th International Conference on Data Engineering (ICDE)

2375-026X/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00131

A missing edge bornIn(v1, v2) can be inferred by enforcing
ϕ2 in G1. Indeed, v1 and v2 match the variables u2 and u′2
in P2 via subgraph isomorphism, but violate ϕ2: there is no
relation bornIn between them. This verifies the missing birth
country ‘US’ of v1 given his birth city ‘Queens’. 2

Nevertheless, simply enforcing all the constraints in a static
“batch” may fail to explain why particular data is missing.

Example 2: Consider a third graph association rule ϕ3 with
pattern P3 (Fig. 1) with the following semantic:

ϕ3: “a scientist (u3) is known for an area (u′3), if he
published a paper (u7) in the same area, and influenced
a peer of his field (u3.field = u8.field) from that area.”

A user issues a (SPARQL) query Q “SELECT ?scientist
WHERE ?scientist KnownFor ‘theo.physics’ ” to search for
“scientists who are known for theoretical physics”. As the
answer Q(G) only contains ‘K.Wilson’, the user is wondering
why R.Feynman, a famous theoretical physicist in G is not in
Q(G). It is desirable to clarify whether and how refining G
with new data can introduce ‘R.Feynman’ to Q(G).

Observe that a missing edge KnownFor(v1 (‘R. Feynman’),
v5(‘theo.physics’)) could be inferred by enforcing ϕ3, and
“enables” R.Feynman to be an answer of Q if inserted.
Nonetheless, ϕ3 is already satisfied by G: it is unknown
whether v1 (‘R. Feynman’) has the same field as v4 (‘K.
Wilson’) due to the unknown ‘field’ (marked as ‘⊥’). Thus
v1 fails to match u3 on “influence in physics”. In fact, no
violation can be captured by ϕ3 in G as is.

On the other hand, the missing edge KnownFor(v1 (‘R.
Feynman’), v5(‘theo.physics’)) can be clarified by interleaving
enforcement in a sequence that “evolves” G:
• Enforcing ϕ2 explains an edge bornIn(v1, v2) is missing,

and infers v1’s birth country given his birth city.

• Inserting the missing edge bornIn(v1, v2) enables the
enforcement of ϕ1, which clarifies why v1 and v′1 should
refer to the same scientist (given the same name, country
and birthdate). It also infers a value ‘physics’ of v1.field.

• The enriched node v1 allows ϕ3 to be enforced, as the
‘influence’ between physicists v1 and v4 are identified.

An explanation for “why” knownFor(v1, v5) is missing can
be characterized by a sequence of “modifications” of G due
to the enforcement of corresponding constraints {ϕ2, ϕ1, ϕ3}.
It also clarifies “how” to recover knownFor(v1, v5). This helps
users to track and diagnose the refinement of graphs. 2

Although desirable, clarifying specific missing values is
nontrivial, due to the high computational complexity of enforc-
ing the graph data constraints and the dynamic enforcement
when G is large. These call for efficient solutions that are
optimized to clarify specific missing values.
Contribution & Organization. We propose a constraint-
based approach to clarify missing data in graphs, and study the
problem complexity, measurements and feasible algorithms.

(1) Formal Characterization (Section III). Given a graph G
and data constraints Σ of G, we introduce Σ-explainability to
characterize whether a designated missing value can be derived
via sequential enforcement of Σ (“an explanation”). These
sequences ensure more informative graphs, and eventually
all terminate at a unique graph up to graph homomorphic
equivalence (Section III-B). As such, they clarify missing data
with responsible constraints (“Why”) and operators (“how”).

(2) Quality measures (Section III-C). We quantify the quality
of constraint-based explanations with two measures: informa-
tiveness gain (amount of new values introduced to G), and
conciseness. Based on the measures, we study Σ-explanation
problem to compute concise and informative explanations for
specified missing data of interests. We show that deciding Σ-
explanability is complement to the validation problem of Σ,
and is nontrivial (e.g., ∆P

2 for graph keys). We also show that
it is doable given an oracle that efficiently detects violations.

(3) Bidirectional Search (Section IV). We develop an algo-
rithm BiExp for Σ-explanation. The algorithm uses bidirec-
tional search to explore applicable actions (forward search)
and virtual “enablers” (backward search) requested in order to
derive missing data. We develop pruning techniques to reduce
unnecessary exploration of enforcement.

(4) Extensions (Section V). We also extend BiExp for two
applications. The first variant clarifies missing values in query
results for subgraph queries. It incorporates query processing
into a bidirectional search of BiExp and has the same worst-
case time cost. The second, in support of online graph re-
finement, can progressively construct explanations for specific
values of interests, and incur a bounded cost on enforcing
constraints (e.g., time). It also guarantees a competitive ratio
6 · ln|V |+ ln(cucl) + 1, where [cl, cu] is the range of the cost
for enforcing a single data constraint in Σ.

(5) Experimental study (Section VI). Using real-world graphs,
we experimentally verify the efficiency and effectiveness of
our constraint-based algorithms. (1) We find our algorithms
effectively exploit data constraints to clarify the missing data
of interests that may not be inferred by batch enforcement.
(2) The bidirectional search and optimization techniques ef-
fectively reduce the cost. For example, BiExp improves its
unoptimized counterparts by 2.1 times, and is 3.1 and 7.3
times faster than the counterparts using forward and back-
ward search alone, respectively. (3) Our algorithms effectively
clarify specific missing values with bounded enforcement cost
and for subgraph queries, as verified by our case study.
Related work. We categorize the related work as follows.

Graph refinement. Various link prediction methods have been
studied to infer missing links in graphs [1], including as-
sociation analysis [5], [13], supervised link prediction [2],
and embedding methods [1]. Graph entity resolution [16]
aims to infer node equivalence by enforcing keys [6], [10],
association rules [17] or via interactive inference [18]. Graph
identification [19] uses probabilistic soft logic to infer identical
nodes and missing facts in knowledge graphs. These methods

1477

are optimized to refine the entire graph. In contrast, our method
enforces data constraints to infer a necessary amount of data
towards user-specified values, for which enforcing all the
missing values is neither practical nor necessary.

Graph data repairing. Functional dependencies for graphs
(GFDs) [7], [20], among rule-based graph repairing [3], [21],
[22] uses constraints and data quality rules to capture and
remove inconsistencies in graphs. For example, Chase for
graphs [20] captures a sequence of quotient graphs induced
by equivalent classes of nodes upon the enforcement of
GFDs. Subset repairs and prioritized repairs based on Pareto
optimality [23] aim to derive best replacement of values that
can improve the overall inconsistencies. Our work differs
from these work. (1) Rather than repairing the entire graph,
we aim to infer necessary data and responsible constraints
to clarify user-specific values. Our non-destructive approach
enriches missing values to ensure more informative graph
instances. (2) We use Chase to characterize constraint-based
explanations. Unlike Chase that resolve inconsistent values
with a preferred value [7], [20], our process preserves values
with union semantics to preserve possible explanations.

Why provenance. Why-provenance has been studied for re-
lation data [24], [25] and graphs [4]. Data provenance (or
Why-provenance) tracks the data that contributes to query
answers [24]. Query provenance (or “Why-not” questions)
identifies operators that lead to desired answers [4]. Both
approaches assume that the data of interests are already in
the database, but cannot clarify missing data that is not in
the data. Constraints are used to explain certain answers in
incomplete databases [26], yet feasible algorithms are not
discussed especially for graph data. Data provenance with
functional dependencies [15], [27] apply static enforcement
of data constraints e.g., inclusion dependencies to derive non-
operational explanations as possible values. These work do
not consider operational enforcement of data constraints that
involve graph patterns and their dynamic enforcement, which
are needed to clarify specific missing values in graphs.

II. GRAPHS AND DATA CONSTRAINTS

We start with a notion of graphs with missing values.
Graphs. A graph G = (V,E,L, F,X) contains a finite set of
nodes V , a set of edges E ⊆ V × V , and a set of associated
variables X to denote missing values.

(1) Each node v ∈ V has a label L(v) (e.g., type) and an
identifier id that refers to a real world entity (e.g., URI). It
carries a tuple F (v) that is defined on a set of attributes A.
The value of an attribute v.A in the tuple F (v) is either a
constant a from a finite set C, or a distinct node variable xAv

=‘⊥’ (marked null) from X that represents a missing value.

(2) Each edge r(v, v′) ∈ E carries an edge label r ∈ C (e.g.,
a relation name). There is an edge variable xrvv′ ∈ X with a
value‘⊥’ for each r(v, v′) 6∈ E (xrvv′ = 1 if r(v, v′) belongs
to the missing fraction of G; xrvv′ = 0 otherwise).

We assume G has a complete set of nodes V . Each variable
x ∈ X from G denotes a missing element. An element is

φ4

r
e
le
a
s
e

(singer)z2

z1

z3

(song)

name='Eminem'

(album)

(singer)z6

Fig. 2: Graphs and instances (a case of NE).

either an attribute-value pair (v.A, a) that specifies a value a
for attribute v.A, or an edge r(v, v′).

Valuation. Given a graph G = (V,E, L, F,X), a valuation
of G is a function defined on X such that there is at least
one variable x=‘⊥’ in X valuated to: (1) a set of constants
CAv ⊆ C, if x is a node variable, or (2) x=1, if x is an edge
variable. An instance of G is a graph induced by a valuation.
An instance can be a multigraph and may contain self-loops.

Example 3: An incomplete graph G is illustrated in Fig. 1
(excluding the edge bornIn(v1, v2) in G1). Each node vi has
a distinct identifier id = i (i ∈ [1, 6]). The set X marks
three missing elements: X = {xfieldv1 =⊥, xbornInv1v2 =⊥
, xknownForv1v5 =⊥}, which encode a missing attribute value,
and two missing edges. A valuation that sets xfieldv1 =
‘physics’ (resp. xbornInv1v2 = 1) induces an instance of G with
new elements v1.field = ‘physics’ (resp. bornIn(v1, v2)).

Similarly, Fig. 2 illustrates a graph G4 of facts of entertain-
ment, with a missing value genre at z2. 2

Remarks. We consider a weaker representation of incomplete
graphs with marked nulls, similar to conditional tables [28].
A valuation can replace null with a set of possible values.
This allows us to keep track of possible instances that may
contribute to user-defined missing values (see Section III).
Graph data constraints. We next review data constraints for
graphs. A data constraint ϕ defined on a graph G may
• enforce node equality (denoted as a NE constraint):

P → uo.id = u′o.id

• or assert a missing edge (denoted as an EG constraint):

P → ∃r(uo, u′o)
Here P = (P,L) (called a pattern) specifies a graph pattern

P (uo, u
′
o) and a set of literals L defined on attributes A. (1)

A graph pattern P (uo, u
′
o) contains a set of nodes (variables)

VP and edges EP . Each node u ∈ VP (resp. edge e ∈ EP) has
a label LP (u) (resp. LP (e)). The nodes uo and u′o in VP are
two designated entity nodes. (2) Each literal l ∈ L is either a
constant literal u.A = a (a is a constant), or a variable literal
u.A =u′.A′ (u, u′ ∈ VP , A,A′ ∈ A).

1478

Matches. We characterize graph data constraints with graph
homomorphism [29], which subsumes several common seman-
tics [5]–[8], [11] and takes into account the labels of nodes
and edges. Consider ϕ with pattern P=(P,L).

(1) A matching from graph pattern P (uo, u
′
o) to G is a function

h from VP to V , such that (a) for each edge (u, u′) ∈ EP ,
(h(u), h(u′)) ∈ E, LP (u) = L(h(u)), LP (u′) = L(h(u′)),
and (b) LP (h(u), h(u′)) = L((u, u′)). A pair of nodes (v, v′)
is a match of P induced by h, if h(uo) = v and h(u′o) = v′.

(2) A pair of nodes (v, v′) is a match of ϕ, if it is a match
of P (uo, u

′
o) induced by a matching h from P (uo, u

′
o) to G,

and h satisfies L, i.e., for each literal l ∈ L, h(u).A = a (resp.
h(u).A = h(u′).A) if l = (u.A = a) (resp. u.A = u′.A).

Example 4: Fig. 1 illustrates the patterns of constraints ϕ1,
ϕ2, ϕ3 with conditions and matches on G specified as follows.

P Graph pattern P Literals L Matches

P1 P1(u1, u
′
1)

{u1.name =u′1.name,
u1.DOB =u′1.DOB,
u4.val =u′5.val }

∅

P2 P2(u2, u
′
2) ∅ (v1, v2)

P3 P3(u3, u
′
3) {u3.field =u8.field } ∅

P4 P4(u4, u
′
4)

{u9.name = u10.name,
u9.genre=u10.genre,
u11.name=u12.name}

(z2, z6)

Fig. 2 illustrates another pattern P4 = (P4(u4, u
′
4), L4), with

the conditions and matches in G4 also illustrated above. The
matches P4(G4) = {(z2, z6)} is induced by a matching h,
where h(u11)=h(u12)=z7, and h(u9)=h(u10)=z3. 2

Semantics. A NE (resp. EG) ϕ with pattern P=(P (uo, u
′
o),L)

states that “for any match (v, v′) of (uo, u
′
o), v and v′ are

equivalent and should refer to a same entity” (resp. “has a
missing edge r(v, v′)”). A match (v, v′) of a NE (resp. EG) ϕ
is a violation of ϕ if v.id 6= v′.id (resp. r(v, v′) 6∈ E).

A graph G satisfies a NE (resp. EG) ϕ, denoted as G |= ϕ,
if there exists no violation of ϕ in G. It satisfies a set of
constraints Σ (G |= Σ), if for every ϕ ∈ Σ, G |= ϕ. In the
rest of the paper, we consider Σ as a set of NEs and EGs.

Example 5: Fig. 1 illustrates three constraints: a NE ϕ1: P1 →
u1.id = u′1.id, an EG ϕ2: P2 → ∃ bornIn(u2, u

′
2), and an EG

ϕ3: P3 → ∃ knownFor(u3, u
′
3). As is, G |= {ϕ1, ϕ3}, and

G 6|= ϕ2, where (v1, v2) is a violation of ϕ2.
We illustrate three more data constraints on G4 in Fig. 2 and

Fig. 3: NE ϕ4: P4→ u4.id = u′4.id, EG ϕ5: P5 → ∃ ost(u5, u
′
5)

and EG ϕ6: P6 → ∃ collaborate(u6, u
′
6). 2

III. EXPLAINING MISSING VALUES WITH CONSTRAINTS

A. Constraint Enforcement and Sequences

We next characterize the enforcement of data constraints
following Chase [28], [29]. We start with a notion of operators.
Operators. An operator “modifies” graph G to remove a
violation of a data constraint. We consider the following.
(1) A merge operator ◦(v, v′) for a NE ϕ replaces v and v′

with a new node v′′ (an “equivalent class”) as follows. (a)
L(v′′) = L(v) = L(v′), v′′.id = min{v.id, v′.id}. (b) Set tuple
F (v′′) by setting v′′.A = v.A ∪ v′.A for each attribute A in

F (v) or F (v′) (v.A = ∅, if A is not in F (v) or v.A = ⊥;
similarly for v′.A). (c) Redirects the edges of v and v′ to v′′.
(2) An insertion operator ⊕((v, v′), r) enforced by an EG ϕ
over a violation (v, v′) inserts a new edge r(v, v′).
Sequences. Given a graph G and constraints Σ, an action s
is a triple ((v, v′), o(v, v′), ϕ), where (v, v′) is a violation of
ϕ in G, and o(v, v′) is an operator (◦ or ⊕) that removes the
violation (v, v′) of ϕ from G. The result of s on G, denoted
as Gs, refers to the graph obtained by applying o(v, v′) on G.

A sequence ρ = {s1, . . . , sn} is a nonempty sequence of
actions from G with result G′ (denoted as G′ = Gρ), where
Gi = Gsii−1 (i ∈ [1, n], G0=G, Gn=G′). Specifically, ρ can be
a single “identity” action {ε}, which yields G itself (Gε=G).

Example 6: Given graph data constraints Σ = {ϕ1, ϕ2, ϕ3},
and a sequence of actions ρ = {s1, s2, s3} where s1 =
((v1, v2),⊕((v1, v2), bornIn),ϕ2), s2=((v1, v

′
1), ◦(v1, v

′
1), ϕ1),

and s3 = ((v1, v5),⊕((v1, v5), knownFor),ϕ3), we have G3 =
Gρ (as illustrated in Fig. 2). Note that G3 |= Σ.

For Σ = {ϕ4, ϕ5, ϕ6} (Fig. 2, 3), G5 = Gs14 (resp.
G6 = Gs25) with s4 = ((z2, z6), ◦(z2, z6), ϕ4) (resp. s5 =
((z1, z9),⊕((z1, z9), ost), ϕ5)). The node z8 is obtained from
◦(z2, z6), which takes their common attribute age =‘48’,
resolves possible values for name as a set Cnamez8 =
{‘Eminem’, ‘M.Mathers’}, and retains ‘genre’ from z6. One
can verify that G5 |= ϕ4, G5 6|= ϕ5, and G6 |= {ϕ4, ϕ5}. 2

The result below verifies that sequences preserve the infor-
mation of G. In other words, they are “non-destructive”.

Lemma 1: Given graph G and constraints Σ, for any sequence
ρ, there is a graph homomorphism hρ from G to Gρ, and
for any element g=(v.A, a) (resp. r(v, v′)) in G, hρ(g) =
(hρ(v).A, a) (resp. r(hρ(v), hρ(v′))) is an element in Gρ. 2

Proof sketch: Let ρ = {s1, . . . , sn}. We construct hρ as a
composition function hs1 . . .hsn . Each hsi (i ∈ [1, n], G0 =
G,Gn = Gρ) is a function from the nodes of Gi to those in
Gi+1, where hsi(v) = hsi(v′) = v′′, if si = ◦(v, v′) and yields
v′′ in Gi+1, or hsi(v) = v otherwise. We can verify that each
hsi (i ∈ [1, n]) (resp. hρ) is a graph homomorphism from Gi
to Gi+1 (resp. G to Gρ) that preserves the elements of G. 2

Given Lemma 1, we say an element g = (v.A, a) (resp.
r(v, v′)) occurs in the instance Gρ of G, simply denoted as
g∈Gρ, if hρ(v).A=a (resp. r(hρ(v), hρ(v′) is an edge) in Gρ.

Properties. We justify the sequences by showing that they
ensure the informativeness of the results towards a unique
result. We start with a notion of informativeness ordering.

Informativeness. Given G and Σ, we denote the set of all the
results of a sequence from G (including G) as GΣ. Given two
instances G′ and G′′ in GΣ, we say G′ is not more informative
then G′′, denoted as G′ � G′′, if G′′Σ ⊆ G′Σ.

Intuitively, G′′ is “more informative” if it has less results
G′′Σ. That is, the more possible instances of G′ that can be
derived by a sequence that enforces the data constraints from
Σ, the less informative G′ is. We have the following result.

1479

Theorem 2: Given a graph G and constraints Σ, for any
instance G′ ∈ GΣ and any sequence ρ from G′, G′ � G′ρ. 2

We prove Theorem 2 by showing the following result.

Lemma 3: The relation � is a partial order over GΣ. 2

Intuitively, a sequence results valuated instances that be-
come more “certain” on missing values. We provide the
detailed proof of Lemma 3 and Theorem 2 in [30].

Uniqueness. Following Chase and its Church-Rosser prop-
erty [28], [29], we next present a uniqueness guarantee, which
states that any sequence will terminate at a “unique” result. We
say a sequence ρ terminates at an instance G′∈GΣ if G′s=G′

for any possible action s. We show the following result.

Theorem 4: Given G and Σ, (1) any sequence from G
terminates with at most |V | + |V |2 actions, and (2) for any
two sequences ρ and ρ′, the results Gρ and Gρ

′
are homomor-

phically equivalent, i.e., there exists a graph homomorphism
from Gρ to Gρ

′
, and vice versa. 2

Proof sketch: Theorem 4 (1) can be verified by observing
that any action reduces either one node or insert one s edge
from a finite node set V of G. We show Theorem 4(2) by
contradiction. Assume Gρ to Gρ

′
are not homomorphically

equivalent, then there exists at least one violation in w.l.o.g.
Gρ and an action s such that Gρs 6= Gρ, which contradicts
that ρ terminates at Gρ. We present the details in [30]. 2

B. Explanations for Missing Values

We next characterize the explanations for specific element.
Σ-explainable. Given graph G and constraints Σ, a missing
element g not in G is Σ-explainable, if there is a sequence ρ
such that g ∈ Gρ. We say ρ is an explanation of g.

Example 7: Continue with Example 6. The two sequences ρ1

= {s1, s2, s3} over G (Fig. 1) and ρ2 = {s4, s5} over G4 in
Example 6 are explanations for missing elements KnownFor
(v1, v5) in G and ost(z1, z9) in G4, respectively. Note that ρ1

terminates at G3 given Σ={ϕ1, ϕ2, ϕ3}. 2

Given Theorem 2 and Theorem 4, an explanation ρ of a
missing element g is well-defined with guarantees on infor-
mative instances, ensures the occurrence of g, and eventually
terminates at unique result up to graph homomorphism.

C. Measures for Explanations

There can be multiple explanations for a missing element.
We next introduce measurements for “good” explanations.
Informativeness. Given an explanation ρ of element g that
starts from G, the cumulative informativeness gain, denoted
as cg(ρ,G), is defined as

cg(ρ,G) =
∑
s∈ρ

supp(s,G) · cg(s,G)

where supp(s,G) for s that enforces ϕ (with P and graph pat-
tern P) is computed as the fraction of the matches that satisfy

(singer)

z1
(song)

z5
(writer)z4

(video)

d
ir
e
c
t

Fig. 3: Instances by enforcing NEs and EGs

ϕ to the total matches P (G). cg(s,G) is the informativeness
gain of an action s∈ρ, and is separately defined as follows:

cg(s,G) =

{
1

|r(L(v),L(v′))| , if s = ⊕((v, v′), r)

diff(v, v′), if s = ◦(v, v′)

(1) For edge insertion ⊕, r(L(v), L(v′)) = {(v1, v2)|(v1, v2) ∈
E, h(v1) = h(v), h(v2) = h(v′)}. The measure cg(s,G)
(cg(s,G) ∈ (0, 1]) quantifies the additional gain under partial
closed world assumption [2], [31]: the more edges similar
to r(v, v′) are known, the less the gain is. cg(s,G) = 1 if
r(L(v), L(v′))=∅ (by inserting “a first of its kind”) [31].
(2) For node merge ◦, cg(s,G) favors to merge two equivalent
nodes with tuples F (v) and F (v′) that are more different.
This can be quantified as the symmetric difference diff(v, v′)
of their attributes [32], which indicates more variables can be
valuated, or more possible values can be identified. We provide
more details of cg (supp and diff) in the full version [30].

Conciseness. We follow the principle of minimality for expla-
nations. A minimal explanation for an element g is a sequence
ρ such that g ∈ Gρ, and g 6∈ Gρ′ for any subsequence ρ′ of
ρ. We prefer minimal explanations within a bounded length.
Note that |ρ| ≤ |V |2 + |V | for any sequence ρ (Theorem 4).

Example 8: Assume the nodes z2 and z6 in Example 6
have another common attribute occupation (not shown) then
cg(s4, G4) = 2

4 . We can also verify that cg(s5, G4) = 1.
Given that supp(s4, G4) = 1 and supp(s5, G4) = 1, we have
cg(ρ2, G4) = 1.5. 2

Properties of measures. We show the following properties of
our measures. (1) cg(ρ) = 0 if ρ = ∅ (Consistency:“no gain
if not an explanation”). (2) cg(ρ) ≥ cg(ρ′) if Gρ � Gρ

′

(Informativeness: “more informative result, more gain”). (3)
cg(ρ{s}) ≥ cg(ρ{s′}), if s.ϕ |= s′.ϕ′ (Generality: “prefer ρ
that enforces constraints which logically imply those enforced
by others”). These properties justify our measures.

We present the detailed proofs of these properties in [30].

Problem Statement. Based on these measures, we study the
following optimization problem, denoted as Σ-explanation.

• Input: Graph G, a missing element g 6∈ G (can be a
wildcard ′ ′), graph data constraints Σ, and a bound b;

1480

• Output: a minimal explanation ρ for g s.t.

ρ = arg max
|ρ′|≤b

cg(ρ′, G)

The targeted element g can be a wildcard (“don’t care”).
This is useful when no preference or ground truth is specified,
and one wants to find what can be inferred (see Section V-A).
Complexity. We relativise the hardness of Σ-explanation with
the validation problem, which is to decide whether G |= Σ
(Section II). We make a case for Σ as a set of graph keys and
graph association rules, and show the following result.

Theorem 5: Σ-explanation is in ∆P
2 for Σ defined as a set of

graph keys and graph association rules. 2

Proof sketch: We prove Theorem 5 as follows.
(1) Consider the following special case of Σ-explanation:
given G, Σ and g=′ ′, it is to decide whether there exists
an explanation ρ with size 1 (a single action). We show that
this problem is a complement of the validation of Σ over G:
there exists an explanation if and only if G 6|= Σ.
(2) We next show that Σ-explanation is equivalent to deciding
whether there is a path with length bounded by b from G to an
instance with g, in the lattice (GΣ,�) induced by the partial
order � (Lemma 3). We provide a PTIME algorithm to solve
Σ-explanation that invokes an oracle for the validation of Σ.

As the validation problem of graph keys and association
rules is coNP-complete [33], Theorem 5 follows. 2

We present the detailed proof in [30].
Remarks. We compare explanations with constraint-based
data repairing. Unlike Chase sequences that resolve inconsis-
tencies with a single preferred value (cf. [29]), we use merge
operators to union possible values in order to identify possi-
ble explanations. Subset repairs and prioritized repairs with
Pareto optimality [21] aim to resolve all the inconsistencies
with minimal repairs. In contrast, an explanation infers small
amount of new data that leads to designated missing values.

IV. COMPUTING OPTIMAL EXPLANATIONS

We next introduce algorithms for Σ-explanation. We assume
an “oracle” (denoted as DetVio) is available to detect the
violations of Σ in G. It can be efficiently implemented by
e.g., incremental and parallel pattern matching [33].

A naive solution. Following Theorem 5, one may simply
invokes DetVio to construct a lattice E = (GΣ,�), and
computes the explanation as a shortest path (by reversing gains
to distances). Nevertheless, this can be expensive due to the
excessive number of instances and violation detection.

We next develop an efficient algorithm, denoted as BiExp,
to compute explanations without constructing E .

A. Bi-directional Exploration

The algorithm BiExp initializes and explores a partially
observed lattice E = (GΣ,�) (not known a-priori) with a bi-
directional exploration strategy as follows.

Algorithm BiExp
Input: Graph G, element g, data constraints Σ, size bound b.
Output: a minimal explanation ρ for g.
1. initialize queue Qf :={sr}; Qb:={sg}; tree Tf={sr}; Tb={sg}
2. while Qf 6= ∅ and Qb 6= ∅ and h(Tf) + h(Tb) ≤ b do
3. if Qf 6= ∅ then sf := Qf .Dequeue(); /*Forward search*/
4. if sf=sg or sf∈Qb then
5. return ρ := ConstrExp(Tf , Tb, sf);
6. for each s′f ∈ Forward(Tf , sf) do
7. Qf .Enqueue(s′f);
8. if Qb 6= ∅ then sb := Qb.Dequeue(); /*Backward search*/
9. if sb=sr or sb∈Qf then
10. return ρ:=ConstrExp(Tf , Tb, sb);
11. for each s′b ∈ Backward(Tb, sb) do
12. Qb.Enqueue(s′b);
13. return ∅;

Fig. 4: Algorithm BiExp

• Forward search: starts from G and invokes DetVio to
explore admissible actions (called forward frontier).

• Backward search simultaneously starts with a “virtual”
instance Gg that contains g, and “reverse engineers”
Σ enforcement to explore a set of enabling actions
(maintained in its backward frontier) that may result Gg .

The algorithm reconstructs explanations upon frontier inter-
section over explored fraction of E .

The bidirectional search reduce unnecessary exploration by
refining forward frontier given current backward frontier, and
vice versa. As the unknown GΣ is monotonically decreasing
(ensured by Theorem 2), BiExp ensures better explanations by
making the graph G more “certain” in the exploration.

We start with the auxiliary structures of BiExp.
Auxiliary structures. Algorithm BiExp maintains the follow-
ing. (1) A set of Boolean variables (called element variable),
where a variable x(g,G) is 1 if g ∈ G, and 0 otherwise. The
values can be easily maintained by tracking the valuation of
G (the values of the variables X). (2) A forward tree Tf and
a backward tree Tb, specified as follows.

Forward tree. The forward tree Tf has a root sr. Each node in
Tf is an action s = ((v, v′), o, ϕ) (sr = (∅, ε, ∅)). There is an
instance Gs associated with node s, where Gs = Gρ, and ρ is
the sequence (path) from sr to s in Tf . The forward frontier
of of Tf is a set of leaves (initialized as sr) that are selected
to be applied to generate new instances.

Backward tree. The backward tree Tb maintains a set of
enabling actions that are required (depending on forward
frontier). Tb is initialized as a root node sg as follows.

• If g = r(v, v′), sg = ((v, v′), ⊕((v, v′), r), ϕ)), where EG
ϕ ∈ Σ asserts a missing edge r(uo, u′o) such that v and
uo (resp. v′ and u′o) have the same label.

• If g = (v.A, a), sg = (∅, ε, ∅)).

Sequences are constructed in a backward direction in Tb.
The backward frontier ob of Tb contains a set of (backward)
leaves, which are selected to explore preceding actions that
may lead to g. For each node s = ((v, v′), o(v, v′), ϕ) in ob,
the following are dynamically maintained:

1481

Procedure Backward
Input: backward tree Tb, node s.
Output: backward frontier ob.
1. initializes enabler set Se := {s};
2. induce graph G(s) := InduceSG(Gs, d);
3. while s.con 6= False and Se 6= ∅ do

/* generate enablers for action s */
4. Se := GenAction(G(s), s);
5. for each se ∈ Se and ϕ ∈ Σdo
6. if (se.v, se.v

′) may violate ϕ then
7. S := S ∪ {((se.v, se.v′), se.o, ϕ)};
8. ob = ob ∪ PruneBwd(S); update Tb and s.con;
9. return ob;

Fig. 5: Procedure Backward

• “virtual” instance Gs associated to s,
• a set of enablers, where each enabler s′ of s is an action

that makes (v, v′) a violation of ϕ in Gs′ , and
• a Boolean condition s.con on the element variables.
The element variables are shared by Tf and Tb. The

condition s.con, incrementally evaluated by the shared element
variables, tracks whether the required elements occurs to
enable the application of s towards interested element g. (s.con
= true means s becomes applicable; see “Optimization”).

Example 9: Consider the computation of the explanation
for element g = xostz1,z9 in Figure 3. Following Example 6,
s4 is an enabler of s5 as (z1, z9) becomes a a violation
of ϕ5, encoded as an edge (s4, s5) in backward search Tb.
The enabling condition for s5 is initialized as s2.con =
x(collab(z2, z5), G4). This reduces the problem to computing
explanations for collab(z2, z5). 2

Algorithm. Our algorithm BiExp (as illustrated in Fig. 4)
initializes the forward tree Tf (resp. backward tree Tb) as
a single root node sr (resp. sg) (line 1). It also maintains
two queues, Qf and Qb to store the forward frontier of and
backward frontier ob, respectively (line 1).

BiExp next performs a bidirectional Breadth-First search
(BFS) (up to size bound b; line 2), by invoking a procedure
Forward (resp. Backward) to grow Tf (resp. Tb backwardly)
and refine of (resp. ob), until a common action s ∈ of ∩ ob
is identified (lines 4-5, 9-10). This indicates the action s is
both verified by forward search and meanwhile “needed” as an
enabler in backward search to include g, resulting a sequence
ρ from sr to sg passing s with a result that includes g.

Upon the frontier intersection, BiExp invokes a proce-
dure ConstrExp (not shown) to construct the optimal explana-
tion (lines 5, 10). There may be multiple actions in of ∩ ob.
For each s ∈ of ∩ ob, an explanation is constructed as the
sequence from sr to sg passing s. The best one that maximizes
accumulated gain cg is then returned (∅ if of ∩ ob=∅).
Procedure Forward. Given the current forward frontier of ,
procedure Forward identifies a set of applicable actions. For
each action node s = ((v, v′), o, ϕ) ∈ of with instance Gs,
Forward invokes procedure DetVio to compute a set of viola-
tions Vio(Gs,Σ) =

⋃
ϕ∈Σ Vio(Gs, ϕ), where Vio(Gs, ϕ) refers

to the violations of ϕ. It also invokes a procedure PruneFwd,

Fig. 6: Bidirectional construction for element g = xostz1,z9

to refine of according to desired actions in ob (see “Optimiza-
tion”). The new actions are added as children of s in Tf .

Procedure Backward. Similarly as Forward but more involved,
Backward (illustrated in Fig. 5) determines a set of enablers
for the current ob, and refines ob with enablers.

Computing enablers. For each action s = ((v, v′), o, ϕ) ∈ ob,
Backward computes a set of enablers as follows.

(1) If (v, v′) is not already a match of ϕ with pattern
P=(P,L)) in G, Backward first computes a set of enabling
elements Se for s. A missing element g′ is an enabling element
for s, if adding it to Gs make (v, v′) a match of ϕ in Gs.
Specifically, Backward performs the following.
• Induce a subgraph G(s) of Gs (procedure InduceSG, line

2) with the d-hop neighbors Nd(s) = Nd(v) ∪ Nd(v′),
where d is the diameter of the graph pattern P (uo, u

′
o)

of P (i.e., the length of the longest shortest paths between
any two nodes in P). It suffices to consider G(s) due to
the data locality of graph homomorphism.

• Construct a set of missing edges r(v1, v2) and missing
attribute values (v1.A, a) from G(s) , where r(v1, v2)
and v1.A are needed to form a graph homomorphism
from P (uo, u

′
o) to G(s) that also satisfy L.

(2) For each enabling element g′ and a corresponding ϕ ∈
Σ, an enabler is constructed if enforcing ϕ may introduce
g′ (Procedure GenAction, lines 4-7). The enablers are further
refined by procedure PruneBwd (see “Optimization”) and are
added to backward frontier ob (line 8). .

Example 10: Continue with Example 9, Backward first in-
duces a subgraph (with d = 2) from z1 and z9. It then
generates two enablers (illustrated in Figure 6): s4 which
merges node z2 and z6, and s6 which adds an edge between
z2 and z5. BiExp continues from forward search and finds
s4 ∈ of ∩ ob. This generates a best explanation ρ = {s4, s5}
for the missing element g = xostz1,z9 (Figure 3). 2

B. Optimization

BiExp uses two strategies below to further reduce the cost.
Early termination with conditions. BiExp maintains a con-
dition s.con =

∨∧
(x) for each s ∈ ob. Each clause

∧
(x)

involves element variables for a set of elements in a same
matching h to make s.(v, v′) a match of s.ϕ in Gs.

BiExp incrementally updates s.con with partial evalua-
tion [34]. It dynamically induces residual conditions upon the
assignment of an element variable x (true or false), without
waiting for all the element variables to be evaluated. This
enables early pruning of branches (when all disjunct clauses

1482

become false, i.e., s.con=false), or early detection of frontier
intersection (when a disjunct clause is true, i.e., s.con=true).
Bidirectional pruning. The forward and backward search
interactively refine each other by “pre-matching” the enablers
and actions without verification. Given Σ and constraints
ϕ,ϕ′ ∈ Σ, we say ϕ triggers ϕ′ (ϕ ` ϕ′), if one can find
small model (G,G1, G2) such that G1, G2 ∈ GΣ, G1 = Gs,
G2=Gs,s

′
, and s enforces ϕ, s′ enforces ϕ′.

BiExp estimates a forward closure ϕ+↓ and a backward
closure ϕ+↑ of a data constraint ϕ ∈ Σ as follows. We observe
ϕ 6` ϕ′ if (a) a NE ϕ enforces equivalence on nodes with label
L(uo) = L(u′o), and no nodes in the pattern of ϕ′ has the same
label; (b) an EG ϕ enforces edge r(v, v′) and no edge in the
pattern of ϕ′ has matching node and edge label. This can be
checked in PTIME. Denote all such data constraints ϕ′ (resp.
ϕ) for ϕ (resp. ϕ′) as ϕ↓− (resp. ϕ′↑−).
(1) ϕ+↓ is define as: (a) ϕ ∈ ϕ+↓, and (b) ϕ′ ∈ ϕ+↓ if there
exists a data constraint ϕ′′ ∈ ϕ+↓ such that ϕ′ 6∈ ϕ′′↓−.
(2) ϕ+↑ is defined as: (a) ϕ ∈ ϕ+↑, and (b) ϕ′ ∈ ϕ+↑ if there
exists a data constraint ϕ′′ ∈ ϕ+↑ such that ϕ′ 6∈ ϕ′′↑−.

The forward closures of a set Σ+↓ is defined as
⋃
ϕ∈Σ ϕ

+↓.
Σ+↑ is defined similarly. Denote the constraints involved in the
enablers and actions in of and ob as Σo and Σb, respectively.
PruneBwd and PruneFwd refine of and ob as follows.

Lemma 6: For any action s that enforces ϕ ∈ Σ, and any
explanation ρ of g such that Gρ ∈ GΣ, s 6∈ ρ if (1) s ∈ ob,
and ϕ↑+ ∩ Σ+↓

o = ∅; or (2) s ∈ of , and ϕ↓+ ∩ Σ+↑
b = ∅. 2

Lemma 6 allows the forward and backward search to
iteratively refine each other (see detailed proof in [30]).

Example 11: Following Example 10, s6 requires a single en-
abler to introduce collab(z2, z5). As {ϕ6}↑+ = ∅ (no constraint
in Σ can trigger ϕ6), PruneBwd removes s6 from ob. 2

These optimization is quite effective. For a real graph with
4.5 million edges, the pruning reduces the time cost by 52%
without losing the quality of explanations (see Section VI).
Analysis. BiExp simulates a bidirectional breadth first search
of the lattice (GΣ,�), with at most min{|V |2|Σ|, b} forward
or backward spawning. Each spawning invokes DetVio with a
time T . Each spawning triggers at most |V |2 violations, thus
generate up to |V |2|Σ| actions. The bidirectional search is thus
in O(T · (|V |2|Σ|) b

2), given that b� |V |. (2) For correctness,
BiExp terminates with a minimal explanation ρ (∅ if g is not
Σ-explainable). It computes ρ with the maximized gain as a
shortest path from sr to sg in the lattice (GΣ,�) (Theorem 5).

V. EXTENSIONS

In this section, we extend BiExp to support cost-effective
graph refinement, and to clarify missing answers.

A. Budgeted Graph Refinement

Refining graphs by inferring new elements with Σ can still
be expensive when no targeted element is provided (g=′ ′)
and for large G (e.g., social networks). It is often desirable to

Algorithm ApxExp
Input: an incomplete graph G, data constraints Σ, resource bound B.
Output: a sequence ρ.
1. Queue Q:=∅; Sequence ρ:=∅; Instance G′ = G;
2. initialize action sr:= (∅, ε, ∅);
3. List S := NextBatch (sr, G

′,Σ); Q.Enqueue(S);
4. while Q 6= ∅ and c(ρ) ≤ B do
5. action s := Q.Dequeue();
6. if cg(s,G′)

c(s)
≥ Ψ(c(ρ)

B
) then

7. ρ := ρ ∪ {s}; G′ := G′s;
8. S := NextBatch(s,G′,Σ); Q.Enqueue(S);
9. return ρ;

Fig. 7: Algorithm ApxExp

obtain some result first, and “gradually” improve the results
towards overall solution [18], [35]. Such need can be addressed
by solving the following budgeted Σ-explanation problem.
• Input: Graph G, a wildcard element, data constraints Σ,

and a cost bound B;
• Output: a sequence ρ∗ = arg max|c(ρ)|≤B cg(ρ,G).

where the cost c(ρ) =
∑
s∈ρ c(s). Moreover, each action s has

a cost c(s) that is not known a priori. In practice, the costs can
be quantified by graph editing cost [35] or the dissimilarity
of the nodes [1]. For simplicity, we choose unit cost. Our
techniques can be readily extended to other cost functions.

The hardness of Σ-explanation remains intact for the above
problem. As the cost of an action can only be determined
upon observed, we aim to incrementally maintain a sequence
ρ∗ that has the largest cg(ρ) among the sequences over all the
currently observed actions. We show the following result.

Theorem 7: There is a one-pass algorithm for budgeted Σ-
explanation with wildcard, with a competitive ratio 6 · ln|V |+
ln(cucl) + 1 at any time, where cu and cl is the maximum and
minimum cost of an action, respectively. 2

That is, the algorithm maintains a sequence ρ at any time,
such that cg(ρ∗) ≤ (6 · ln(|V |) + ln(cucl) + 1) cg(ρ). As a
proof of Theorem 7, we outline such an algorithm.

Algorithm. The one-pass algorithm ApxExp is shown in
Figure 7. It uses a queue Q to store candidate actions, and
maintains an instance to be updated (initialized as G). Its
main driver progressively extends a sequence ρ as follows.
It first invokes a procedure NextBatch to populate a batch of
promising actions S (line 3). For each action s ∈ S, it verifies
whether its gain-to-cost ratio cg(s,G′)

c(s) is no less than threshold

Ψ(c(ρ)B), and extends ρ with s if so (lines 6-7). The threshold
function Ψ(·) for input z is defined as{ 1

|V |4·cu if z ≤ 1
1+6·ln(|V |)+ln(cu

cl
)

(|V |
6·cu·e
cl

)z(1
e|V |4·cu) otherwise

where Ψ(0) provides a lower bound of the gain for any
single action. It then invokes NextBatch to spawn a new batch
of actions given selected s to be verified (line 8).

1483

Procedure NextBatch. The procedure NextBatch performs
forward search as Forward in BiExp, and refines the actions
by pruning those that can no longer introduce gain beyond the
threshold Ψ(·). It also sorts S to early terminate its sequential
processing in ApxExp against a non-decreasing threshold. We
present the details of NextBatch in [30].
Analysis. Algorithm ApxExp approximately maintains the op-
timal sequence by solving a budgeted secretary problem [36],
[37], which is to choose a set of items from a sequence to
maximize the total value under a fixed budget. (1) Let the
lower and upper bound of the gain-to-cost ratio of an action
to be L and U respectively. The selection of actions against
gain-to-cost threshold ensures a competitive ratio [36], [37] as
ln(U/L) + 1 = 6 · ln(|V |) + ln(cucl) + 1. (2) For time cost,
NextBatch takes O(T |Σ||V |2) time (T is the cost of DetVio)
to expand an action in forward search. As at most B

cl
actions

are inspected, the total cost is in O(Bcl · |Σ||V |
2T).

Theorem 7 follows from the above analysis. When shorter
inferences are preferred (c(ρ) = |ρ|), we show that ApxExp
achieves better approximation of 6 · ln(|V |) + 1 (see [30]).

B. Explaining Missing Answers

Our second extension has a practical premise that it is useful
to provide users with operators to change G such that a query
Q returns desired yet missing answer (cf. [25]).
Queries. A query Q maps an instance G to an answer Q(G).
The answer Q(G) is a set of elements (attribute value pairs
or edges) that only contain constant values. An element g is
a missing answer if g 6∈ Q(G). We make case for subgraph
queries Q, which returns a set of nodes induced by graph
homomorphisms (Section II) from Q to G, e.g., SPARQL.

We study the following variant of Σ-explanation.

• Input: instance G, a query Q and query answer Q(G),
an element g 6∈ Q(G); constraints Σ, and a size bound b;

• Output: a minimal sequence ρ s.t. g ∈ Q(Gρ) and |ρ|≤b.

We next outline a variant of BiExp, denoted as BiExpQ to
compute explanations for a missing answer g 6∈ Q(G).

Algorithm. The algorithm BiExpQ uses the bidirectional
search as in BiExp. The differences are as follows.
(1) Besides the instance graph Gs at each node s, BiExpQ also
tracks the query answer Q(Gs), in both forward and backward
search. Q(Gs) can be incrementally maintained [38].
(2) Given an action s in ob, BiExpQ extends Backward to
generate refined enabling elements. These elements not only
make s applicable, but are also the missing elements in the
potential matches of Q in order to make g a part of the answer.
(3) Unlike BiExp, when an element s is identified in ob ∩ of ,
it extracts ρ that contains s, and verifies whether g ∈ Q(Gρ).
Analysis. The correctness of BiExpQ follows from the variant
that any returned sequence ρ, if not ∅, is an explanation of g,
and the verification further ensures g ∈ Q(Gρ). For time cost,
BiExpQ performs one additional step for query processing for
each action, and remains to be in O(T · (|V |2|Σ|) b

2) time.

VI. EXPERIMENT

Using real-world graphs and query benchmark, we evaluate
(1) the effectiveness and efficiency of BiExp and BiExpQ on
clarifying missing elements; (2) the effectiveness of ApxExp
for budgeted inference, and (3) case analysis for applications.
Experimental setting. We used the following setting.

Datasets. We use three real graphs. Each graph G contains
nodes that are curated from two real knowledge bases, with
a set of “ground truth” node pairs Γ. Each pair in Γ is either
equivalent or bears a missing edge.
(1) DBYa1: [10] with 592K nodes, 4.5M edges, and 50K
equivalent pairs (covering 10 types of entities) with aligned
attributes curated from knowledge bases DBPedia and YAGO.
(2) DBIM2: [39] contains 33K nodes, 200K edges and
33.4K entities covering 10 types, totaling 9.5K equivalent
pairs across DBPedia and IMDb (a movie knowledge base).
(3) OAG3: an open academic graph which unifies Microsoft
Academic Graph and Aminer. We sample graphs that contain
papers with selected topics (e.g., “database”, “machine learn-
ing”) and related information (authors, citation). The graph
contains 2.5M nodes, 5.2M edges and 106K equivalent pairs.
(4) SynDBYa: synthetic graphs with ground truth, initialized
by DBYa and its ground truth. We enhance Γ of DBYa by
duplicating the equivalent node pairs and missing edges, and
sample missing elements from the enhanced ground truth. We
produced SynDBYa with size up to 2M nodes and 25M edges.

We induce missing elements of interests from the corre-
sponding ground-truth pairs in Γ, which refer to “one-sided”
values that occur in only one source (thus missing in another).

Constraint generation. We calibrated the mining of data con-
straints from Γ of all the graphs to ensure the following
high quality data constraints. (1) Graph keys as NEs. We
use the algorithm in [9] to discover keys that cover ground-
truth in Γ. We set support and confidence threshold as 0.8
and 0.9, respectively, and extracted 250, 20 and 12 graph
keys, which cover 40K (80%), 7.6K (80%), and 90K (85%)
equivalent node pairs in DBYa, DBIM, and OAG, respectively.
(2) Graph association rules [12], [13] as EGs. We detect EGs
with confidence threshold 0.8 and a smaller support threshold
0.1 to cover missing edges with various types. We extracted
in total 750, 25 and 10 EGs for DBYa, DBIM and OAG,
respectively. (3) We also generated a set of GFDs [7] as NEs
for rule-based entity matching. GFDs subsume graph keys but
cannot directly infer missing links.

Query generation. We generate queries based on DBpedia
SPARQL Benchmark [40] for DBYa. We choose queries to
have some answers in the ground truth but not seen in the
incomplete graphs, and sample missing elements for tests.

Algorithms. We implemented BiExp (Section IV), ApxExp
(Section V-A), BiExpQ (Section V-B), and the following.

1https://github.com/lgalarra/vickey
2https://www.csd.uoc.gr/∼vefthym/minoanER/datasets.html
3https://www.openacademic.ai/oag/

1484

(1) We compare BiExp with (a) BiExp N, a variant of BiExp
without pruning techniques (PruneFwd and PruneBwd); (b)
BiExp Fwd and BiExp Bwd, variants of BiExp N that per-
forms only forward and backward search, respectively; (c)
BiExp NE and BiExp EG, which access Σ that contains only
NEs and EGs respectively. Similarly, we compare BiExpQ with
BiExpQ N, BiExpQ NE and BiExpQ EG.

(2) We compare ApxExp with (a) ApxExp N, a variant
without forward pruning PruneFwd; (b) ApxExp NE (resp.
ApxExp EG) which access Σ that only contains NEs (resp.
EGs). We consider actions with unit cost for these algorithms.

(3) Batch enforcement: NE + EG, which stacks the batch en-
forcement of NEs followed by EGs, and a reversed counterpart
EG + NE that enforces EGs first. These methods simulate
entity matching and link prediction over the entire G.

Beyond data constraints, we also implemented the following
models. (a) TransD + NE first uses TransD [41], a class of
embedding based predictive models to infer all missing links,
and then enforces NEs. We follow [42] to train TransD via
supervised learning. (b) Rule-based link prediction AMIE+ [5]
and entity matching Vickey [10]. We apply AMIE+ and Vickey
in a batch mode similar to EG + NE and NE + EG.

We adopt VF2 [43] to detect violations (DetVio), and
incremental pattern matching [38] to maintain query answers
in BiExpQ. It takes on average 8 seconds to detect all the
violations for graph patterns with 7 nodes and edges.

Metrics. For BiExp (resp. BiExpQ), we report coverage, the ra-
tio of the number of missing elements (resp. missing answers)
explained by BiExp to the total N requests (resp. queries).
For ApxExp, we define the normalized informativeness gain
as cg(ρ)

cg(ρ∗) to measure the closeness between computed explana-
tions and optimal counterpart (obtained by enumeration). To
evaluate the applications in graph refinement, we also report
standard precision |U∩Γ|

|U| and recall |U∩Γ|
|Γ| , where U refers to

the elements inferred by the algorithms.
By default, we set N=20, a size bound b = 4 for BiExp, a

budget B=800 as the total number of actions for ApxExp, and
Σ contains 20 NEs and 20 EGs per test.

Environment. All the algorithms are implemented in Java4. We
ran all our experiments on a Linux machine powered by an
Intel 2.4 GHz CPU with 128 GB of memory. We ran each
experiment 10 times and reported the averaged results.

Experimental results. We next report our findings.
Exp-1: Coverage of BiExp. We sampled missing elements
to be clarified from ground truth and report the coverage of
requests in Figure 8(a). BiExp N, BiExp Fwd and BiExp Bwd
(omitted) produce the same results as BiExp. (1) For all
cases, BiExp covers on average 91% of the 20 requests with
explanations that contain at most 4 actions. BiExp outperforms
BiExp EG (resp. BiExp NE) by 62% (resp. 65%). We found
that 34% of the explanations generated by BiExp have at
least 2 actions. These actions can not be derived by a batch

4source code available at: https://github.com/wsu-db/GRIP/

enforcement of NEs or EGs. (2) BiExp further improves
the coverage by 17% (resp. 27%) compared with NE + EG
(resp. EG + NE). It improves the coverage by 33% compared
with TransD + NE. These results verify that BiExp effectively
explains targeted missing elements with only the necessary
amount of inference rather than refining the entire graph.

The impact of |Σ|. Varying |Σ| from 10 to 40, we report the
coverage of the algorithms in Figure 8(b). The coverage of
all algorithms increases as more data constraints are available.
This leads to richer semantics of the incomplete graphs, thus
is more likely to recover missing elements. On the other hand,
the coverage of BiExp increases from 46% to 92% as |Σ| varies
from 10 to 40, while BiExp NE and BiExp EG explain up to
33% and 23% of the missing elements. This shows that BiExp
can effectively exploit more data constraints.

The impact of size bound b. Using the same setting with 20
requests, we varied b from 1 to 4. Figure 8(c) shows that
all algorithms cover more requests over larger b. BiExp “de-
grades” to EG +NE and NE +EG when b=1, but effectively
exploits useful actions to cover more requests for larger b. For
N requests with queries and missing elements, the coverage
of BiExpQ is close to that of BiExp (thus not shown).

Exp-2: Efficiency of BiExp. Using the same setting in Exp-1,
we report the efficiency of explanation generation. Figure 8(d)
verifies that it is feasible to explain missing elements for
large real-world graphs. (1) On average, BiExp outperforms
BiExp N, BiExp Fwd and BiExp Bwd by 2.2, 3.5 and 8.9
times respectively due to the pruning strategy. For example, it
takes on average 5 seconds per request on OAG with 2.5M
nodes and 5.2M edges. (2) BiExp N improves the efficiency
of BiExp Fwd and BiExp Fwd by 1.6 and 4 times with the
bidirectional strategy alone. BiExp Bwd takes the most time,
as it explores an excessive number of enablers. (3) BiExp EG
and BiExp NE take less time compared with BiExp due to
less actions triggered with only NEs or EGs.

We also evaluate our algorithms over a large synthetic graph
SynDBYa. While all the methods scale well, BiExp is the least
sensitive among all variants. It takes on average 5.9 per request
over graphs of size (2M, 25M). We report the details in [30].

Varying |Σ|. Fixing N = 20 and varying |Σ| from 20 to 60,
we report the performance over DBYa in Figure 8(e). All the
algorithms take more time to explore more actions and data
constraints. BiExp takes up to 1.9 seconds to explore 40 data
constraints per request.

Varying N (BiExpQ). Varying N from 10 to 40, we report the
performance of BiExpQ in Figure 8(f). As other methods are
not designed for explaining missing answers, we report their
time for clarifying the missing element. While all algorithms
scale well over N , BiExpQ takes up to 90 seconds to explain
40 missing query answers (less than 2.3 seconds per query).

Exp-3: Effectiveness of ApxExp. To evaluate ApxExp, We
set budget B as the total number of actions allowed to be
explored (same as the number of calls for oracle; Section V-A).
ApxExp N (omitted) generates the same result.

1485

 0

 0.2

 0.4

 0.6

 0.8

 1

DBYa DBIM OAG SynDBYa(2,25)

C
o

v
e
ra

g
e

BiExp

BiExp_EG

BiExp_NE

NE+EG

EG+NE

TransD+NE

(a) Overall Coverage

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40

C
o
v
e
ra

g
e

BiExp
BiExp_NE
BiExp_EG

NE+EG
EG+NE

(b) Varying |Σ| (DBYa)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4

C
o
v
e
ra

g
e

BiExp
BiExp_NE

BiExp_EG
NE+EG

EG+NE

(c) Varying b (DBYa)

 1

 10

 100

 1000

DBYa DBIM OAG

T
im

e
 (

s
e
c
o

n
d

s
)

BiExp
BiExp_NE
BiExp_EG

BiExp_N
BiExp_Fwd
BiExp_Bwd

(d) Real-world Datasets

 10

 100

 1000

20 30 40 50 60

T
im

e
 (

se
c
o
n
d
s)

BiExp
BiExp_N

BiExp_Fwd

BiExp_Bwd
BiExp_NE
BiExp_EG

(e) Varying |Σ| (DBYa)

 10

 100

 1000

10 20 30 40

T
im

e
 (

se
c
o
n
d
s)

BiExpQ
BiExpQ_N

BiExpQ_Fwd

BiExpQ_Bwd
BiExpQ_NE
BiExpQ_FC

(f) Varying N (DBYa)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5K 1K 1.5K 2K 2.5K

N
o
rm

a
li

z
e
d
 G

a
in

ApxExp
ApxExp_NE
ApxExp_EG

EG+NE
NE+EG

(g) Varying B (DBYa)

 0

 0.2

 0.4

 0.6

 0.8

 1

DBYa DBIM OAG

R
e
c
a
ll

ApxExp
ApxExp_NE

EG+NE

(h) Recall (Entity matching)

 0

 0.2

 0.4

 0.6

 0.8

 1

DBYa DBIM OAG

R
e
c
a
ll

ApxExp
ApxExp_EG

NE+EG

(i) Recall (Link prediction)

 1

 10

 100

 1000

DBYa DBIM OAG

T
im

e
 (

s
e
c
o

n
d

s
)

ApxExp
ApxExp_N

NE+EG
EG+NE

(j) Real-world Datasets

 0

 40

 80

 120

 160

0.4K 0.6K 0.8K 1K 1.2K

T
im

e
 (

se
c
o
n
d
s)

ApxExp
ApxExp_N

NE+EG
EG+NE

(k) Varying B (DBYa)

 0

 100

 200

 300

 400

20 40 60 80 100

T
im

e
 (

se
c
o
n
d
s)

ApxExp
ApxExp_N

NE+EG
EG+NE

(l) Varying |Σ| (DBYa)

Fig. 8: Performance of BiExp and BiExpQ

The impact of resource bound B. As shown in Figure 8(g)
over DBYa, all the algorithms achieve higher informativeness
gain when more actions are allowed to be explored. We
observe the following. (1) ApxExp achieves the highest gain
among all the methods. It converges earlier at the highest gain
compared with other methods. This verifies that ApxExp can
make “better” decisions early by prioritizing the informative
actions. (2) ApxExp NE (resp. ApxExp EG) terminates after
B =2K (resp. B < 1.5K) actions, as it reaches relative com-
pleteness instances using NEs (resp. EGs) alone. (3) EG + NE
continues to improve the gain and outperforms ApxExp EG
when B > 1.5K. We found more node merges are still
applicable due to new edges inserted by enforcing EGs.

Accuracy. Fixing B = 2K, we report the recall (precision
not shown) of ApxExp EG using NEs (resp. EGs) alone for
entity matching (resp. link prediction) over relevant ground
truth in Figure 8(h) (resp. 8(i)). For entity matching, we
omit ApxExp EG and NE + EG, since EGs do not trigger
merging. Similarly, we omit ApxExp NE and EG + NE. (1)
ApxExp improves the recall and precision (not shown) for
both entity matching and link prediction, as more miss-
ing elements are inferred by interacting NEs and EGs. (2)
NE + EG (resp. EG + NE) improves precision of ApxExp NE
(resp. ApxExp EG) but consumes most of resource for entity
matching (resp. link prediction) alone, thus has lower recall.

Exp-4: Efficiency of ApxExp. Using the same setting as in
Exp-3, Figure 8(j) verifies that ApxExp is feasible to refine
large graphs (e.g., 130 seconds for OAG with 800 actions). It
outperforms ApxExp N by 2.36 times on average due to the

online prioritization and pruning strategy. The pruning effec-
tively reduces 76% of graph homomorphism (isomorphism)
verifications. While ApxExp performs more verifications than
NE + EG and EG + NE, it incurs a comparable time cost.

The impact of budget B. Figure 8(k) reports the the time cost
of the algorithms up to the exploration of B actions. All the
algorithms take longer time with larger B. ApxExp is quite
feasible in budgeted scenario. It incurs a delay time on average
0.25 (resp. 0.19) second per batch, and 42 (resp. 22) seconds
to explore 800 actions over DBYa (resp. DBIM). EG + NE
terminates when b > 1K and exhausts applicable actions. In
contrast, ApxExp is able to exploit more and useful actions.

Varying |Σ| and |G|. Figure 8(l) verifies that all algorithms
scale well over |Σ|. Specifically, ApxExp takes 98.9 seconds
with 100 constraints and is 3.8 times faster than ApxExp N.
ApxExp also scales well with |G|, and outperforms ApxExp N
by 3.9 times when |G| is varied to (2M, 25M) (see [30]).

Comparison with other models. Using the same setting as
in Exp-1, we run AMIE+ and Vickey in a batch mode to infer
missing elements over DBYa. We found that BiExp improves
the coverage of AMIE+ + Vickey (resp. Vickey + AMIE+) by
22% (resp. 13%), is 3.6 (resp. 3.8) times faster, and triggers
smaller number of operators. For example, it takes on average
265 operators with 40 constraints, while AMIE+ + Vickey
requires 874 operators using 20 AMIE+ rules and 20 Vickey
keys. We also compare BiExp with GFD + EG over DBYa,
using 20 GFDs and 20 EGs. We find that BiExp outperforms
GFD + EG by 35% on coverage with comparable time cost.

1486

φ

Fig. 9: Clarifying inaccurate elements: case study.

Exp-5: Case Study. We show that BiExp can also be naturally
used to clarify the occurrence of erroneous elements that are
inferred by the constraints. Fig. 9 illustrates a fragment of
DBIM (G7) with two discovered graph association rules:

(ϕ):“an actor (u) stars in a movie (u′) if a producer (p)
he collaborates also produces the same movie”

(ϕ′): “an actor (w) collaborates with an actor (w′) if they
both starred a movie (m).”

The insertion of an edge collab (v1, v3) is annotated as
“inaccurate” (‘M.Gibson’ and ‘M.Hewitt’ collaborated in a
movie). BiExp generates an explanation, which states that an
edge insertion ⊕((v3, v2), starring) (by enforcing ϕ) leads to
the inaccurate element collab (v1, v3) (by enforcing ϕ′). A
closer inspection suggests that ϕ can be an “overkill”, given
the exception of (v3, v2) (“an actor may not always be starring
a movie produced by a producer he collaborated with”).

VII. CONCLUSION

We have introduced a constraint-based approach to clarify
missing elements with established graph data constraints. We
have formulated the measurements and explanation problems.
We have developed bidirectional algorithms with quality guar-
antees. We have verified that constraint-based methods can
effectively and efficiently clarify targeted missing values with
necessary inference. One future topic is to study parallel
algorithms for constraint-based methods. Another topic is to
extend our work to soft constraints (e.g., probabilistic soft
logic) to clarify erroneous attribute values in graph data.
Acknowledgments. This work is supported by NSF under
CNS-1932574, OIA-1937143, ECCS-1933279, CNS-2028748,
DoE under DE-IA0000025, USDA under 2018-67007-28797,
and PNNL Data-Model Convergence initiative.

REFERENCES

[1] H. Paulheim, “Knowledge graph refinement: A survey of approaches and
evaluation methods,” Semantic web, vol. 8, no. 3, pp. 489–508, 2017.

[2] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun, and
W. Zhang, “From data fusion to knowledge fusion,” PVLDB, 2014.

[3] A. Arioua and A. Bonifati, “User-guided repairing of inconsistent
knowledge bases,” in EDBT: Extending Database Technology, 2018.

[4] M. H. Namaki, Q. Song, Y. Wu, and S. Yang, “Answering why-questions
by exemplars in attributed graphs,” in SIGMOD, 2019.

[5] L. A. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek, “Amie: associ-
ation rule mining under incomplete evidence in ontological knowledge
bases,” in WWW, 2013.

[6] W. Fan, Z. Fan, C. Tian, and X. L. Dong, “Keys for graphs,” PVLDB,
vol. 8, no. 12, 2015.

[7] W. Fan, Y. Wu, and J. Xu, “Functional dependencies for graphs,” in
SIGMOD, 2016.

[8] L. Caruccio, V. Deufemia, and G. Polese, “Relaxed functional depen-
dencies—a survey of approaches,” TKDE, vol. 28, no. 1, 2016.

[9] A. Morteza and C. Fei, “Keyminer: Discovering keys for graphs,” in
VLDB workshop, 2018.

[10] D. Symeonidou, L. Galárraga, N. Pernelle, F. Saı̈s, and F. Suchanek,
“Vickey: mining conditional keys on knowledge bases,” in ISWC, 2017.

[11] H. Ma, M. Alipourlangouri, Y. Wu, F. Chiang, and J. Pi, “Ontology-
based entity matching in attributed graphs,” PVLDB, 2019.

[12] W. Fan, X. Wang, Y. Wu, and J. Xu, “Association rules with graph
patterns,” PVLDB, 2015.

[13] P. Lin, Q. Song, J. Shen, and Y. Wu, “Discovering graph patterns for
fact checking in knowledge graphs,” in DASFAA, 2018.

[14] G. Fan, W. Fan, Y. Li, P. Lu, C. Tian, and J. Zhou, “Extending graph
patterns with conditions,” in SIGMOD, 2020.

[15] J. Xu, W. Zhang, A. Alawini, and V. Tannen, “Provenance analysis for
missing answers and integrity repairs.” IEEE Data Eng. Bull., vol. 41,
no. 1, pp. 39–50, 2018.

[16] I. Bhattacharya and L. Getoor, “Entity resolution in graphs,” Mining
graph data, 2006.

[17] M. Pershina, M. Yakout, and K. Chakrabarti, “Holistic entity matching
across knowledge graphs,” in Big Data, 2015.

[18] D. Firmani, B. Saha, and D. Srivastava, “Online entity resolution using
an oracle,” PVLDB, 2016.

[19] J. Pujara, H. Miao, L. Getoor, and W. Cohen, “Knowledge graph
identification,” in ISWC, 2013.

[20] W. Fan, P. Lu, C. Tian, and J. Zhou, “Deducing certain fixes to graphs,”
PVLDB, 2019.

[21] F. N. Afrati and P. G. Kolaitis, “Repair checking in inconsistent
databases: algorithms and complexity,” in ICDT, 2009.

[22] Y. Cheng, L. Chen, Y. Yuan, and G. Wang, “Rule-based graph repairing:
Semantic and efficient repairing methods,” in ICDE, 2018.

[23] B. Kimelfeld, E. Livshits, and L. Peterfreund, “Detecting ambiguity in
prioritized database repairing,” in ICDT, 2017.

[24] P. Buneman, S. Khanna, and T. Wang-Chiew, “Why and where: A
characterization of data provenance,” in ICDT, 2001.

[25] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu, “Why so? or why
no? functional causality for explaining query answers,” arXiv, 2009.

[26] L. Libkin, “Certain answers meet zero-one laws,” in PODS, 2018.
[27] B. Glavic, S. Köhler, S. Riddle, and B. Ludäscher, “Towards constraint-

based explanations for answers and non-answers,” in TAPP, 2015.
[28] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases: the

logical level, 1995.
[29] W. Fan and P. Lu, “Dependencies for graphs,” in PODS, 2017.
[30] Full version. https://songqi1990.github.io/Files/paper/icde2021full.pdf.
[31] L. Galárraga, S. Razniewski, A. Amarilli, and F. M. Suchanek, “Pre-

dicting completeness in knowledge bases,” in WSDM, 2017.
[32] S. Guo, X. L. Dong, D. Srivastava, and R. Zajac, “Record linkage with

uniqueness constraints and erroneous values,” PVLDB, 2010.
[33] W. Fan, “Dependencies for graphs: Challenges and opportunities,” JDIQ,

vol. 11, no. 2, pp. 1–12, 2019.
[34] N. D. Jones, “An introduction to partial evaluation,” ACM Comput. Surv.,

vol. 28, no. 3, p. 480–503, 1996.
[35] S. E. Whang, D. Marmaros, and H. Garcia-Molina, “Pay-as-you-go

entity resolution,” TKDE, vol. 25, no. 5, pp. 1111–1124, 2012.
[36] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg, “A knapsack

secretary problem with applications,” in Approximation, randomization,
and combinatorial optimization, 2007, pp. 16–28.

[37] Y. Zhou, D. Chakrabarty, and R. Lukose, “Budget constrained bidding
in keyword auctions and online knapsack problems,” in WINE, 2008.

[38] W. Fan, X. Wang, and Y. Wu, “Incremental graph pattern matching,”
TODS, vol. 38, no. 3, pp. 1–47, 2013.

[39] V. Efthymiou, K. Stefanidis, and V. Christophides, “Benchmarking
blocking algorithms for web entities,” IEEE Trans. on Big Data, 2016.

[40] M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo, “Dbpedia sparql
benchmark–performance assessment with real queries on real data,” in
ISWC, 2011.

[41] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding
via dynamic mapping matrix,” in ACL, 2015.

[42] P. Lin, Q. Song, Y. Wu, and J. Pi, “Discovering patterns for fact checking
in knowledge graphs,” JDIQ, 2019.

[43] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph
isomorphism algorithm for matching large graphs,” TPAMI, 2004.

1487

