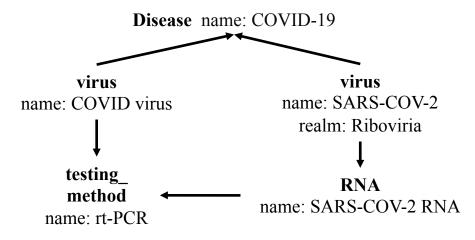


Explaining Missing Data in Graphs: A Constraint-based Approach

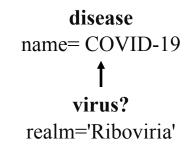
Qi Song¹ Peng Lin² Hanchao Ma³ Yinghui Wu^{3,4}

3

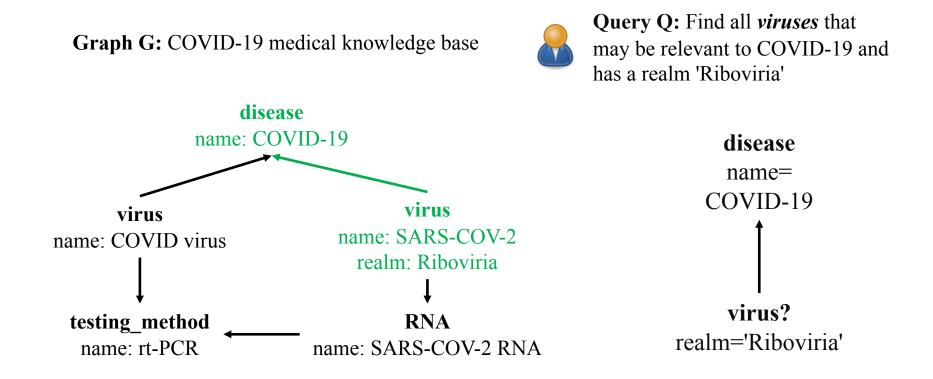
2

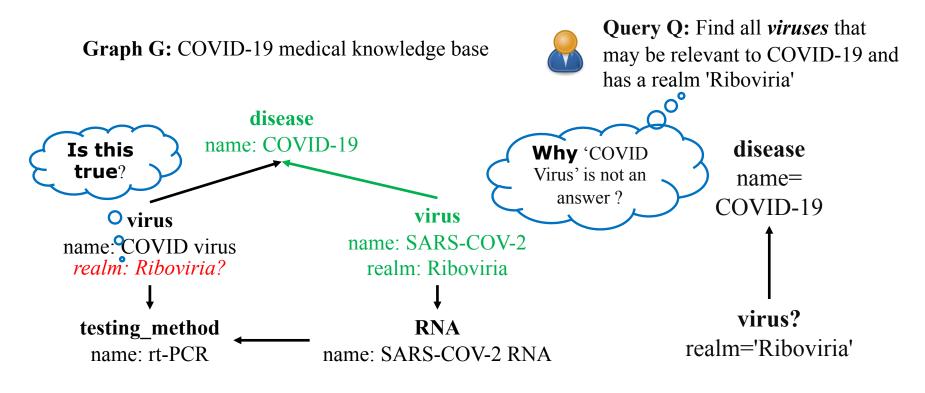

4

Explaining Missing Data in Graphs

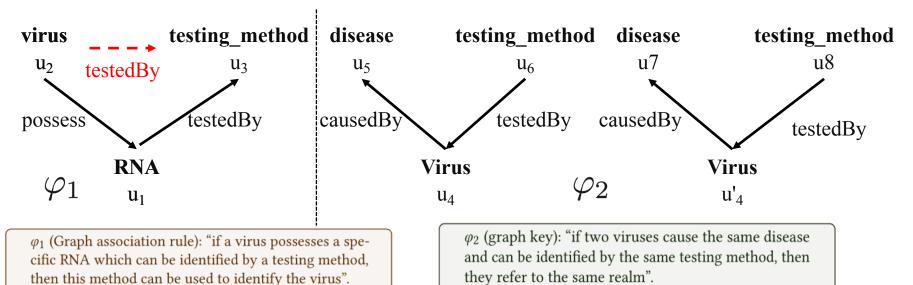

- Real-world graphs are imcomplete: attribute-values of entities and relations are ofte missing
- Clarify why certain expected data is missing, whether such data can be restored, and how.
- Knowledge fution, user-centric data quality, query suggestion, etc

Graph G: COVID-19 medical knowledge base¹

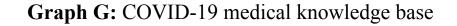


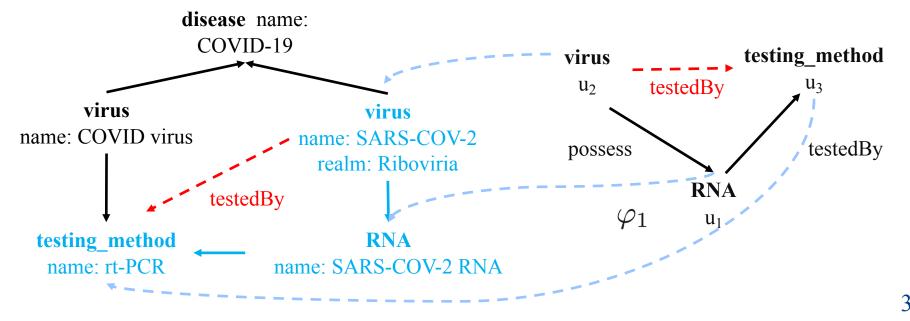

Query Q: Find all *viruses* that may be relevant to COVID-19 and has a realm 'Riboviria'

Explaining Missing Data in Graphs


Explaining Missing Data in Graphs

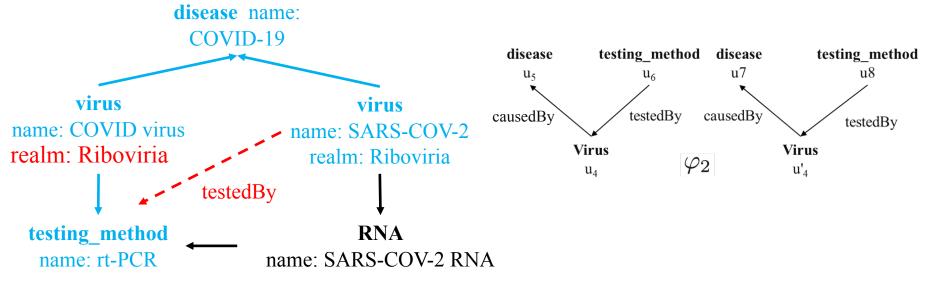
new data needs to be inferred!


Graph Data Constraints


- Data constraints can be used to capture missing data in a graph G.
 - Graph association rules: $P \rightarrow r(u, u')$ (infers missing edges)
 - Key Constraints: $P \rightarrow (u.id = u'.id)$ (node equality; or other equality constraints)

Explaining Missing Edges via Graph Association Rules

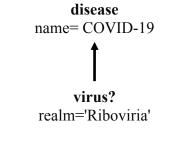
• Enforcing φ_1 "inserts" a missing edge between 'SARS-COV-2' and 'rt-PCR'.



Inferring Missing Attribute Values via Node Equivalence/Keys

- Enforcing φ_1 "inserts" a missing edge between 'SARS-COV-2' and 'rt-PCR'.
- Enforcing φ_2 enriches the missing "realm" information of virus v1.

Graph G: COVID-19 medical knowledge base



Putting these into a "sequence"

- Enforcing φ_1 "inserts" a missing edge between 'SARS-COV-2' and 'rt-PCR'.
- Enforcing φ_2 enriches the missing "realm" information of virus v1.
- These two steps enrich G and restores 'COVID virus' in Q(G)

Graph G: COVID-19 medical knowledge base disease name: COVID-19 virus name: COVID virus realm: Riboviria testing_method name: rt-PCR RNA name: SARS-COV-2 RNA Idea: Constraintbased Explanation

Query Q: Find all viruses that may be relevant to COVID-19 and has a realm 'Riboviria'

Answer: SARS-COV-2, COVID virus

Constraint-based Explanation

- Idea: perform graph rewriting process that transforms graphs by "enforcing" data constraints to verify the occurrence of missing elements.
- Given a missing element g, a query Q with result Q(G₁) in graph G₁, and data constraints Σ, g can be explained by Σ in G₁ (Σ-explainable), if

$$\mathsf{G}_1 \xrightarrow{\varphi_1} \mathsf{G}_2 \xrightarrow{\varphi_2} \dots \ \mathsf{G}_n \xrightarrow{\varphi_n} \mathsf{G}'$$

such that $g \in Q(G')$.

An "explanation" : a sequence of "actions" of enforcement of data constraints.

Church-Rosser Property

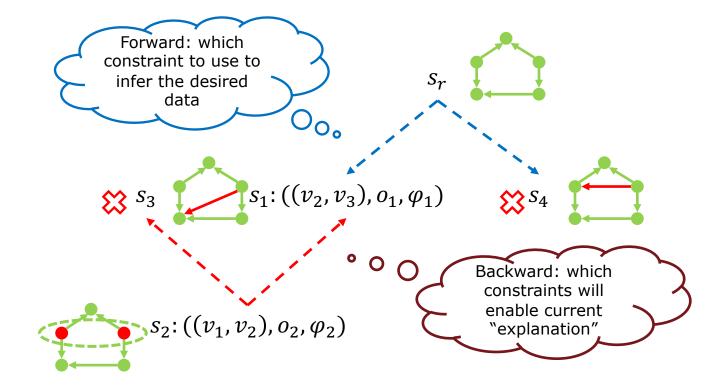
■ For any ∑ of GKs and GARs, any sequence is terminating, and any terminating sequences generate graphs up to graph homomorphism

merge operator: $\circ(v,v')$ insertion operator: $\bigoplus((v,v'),r)$ Use a union function to merge two
nodes v, v' into a new node v''(an
equivalent class)Insert an edge with label r
between v and v'

- Information looseness: this process does not modify data;
- Query result preserving: this process preserves the initial query result.

Explaining Missing Data: Problem Statement

- Input: graph G, a missing element $g \notin G$, graph data constraints Σ , a bound b,
- **Output:** a minimal explanation ρ for g, such that


$$\rho = \arg\max_{|\rho'| \le b} cg(\rho', G)$$

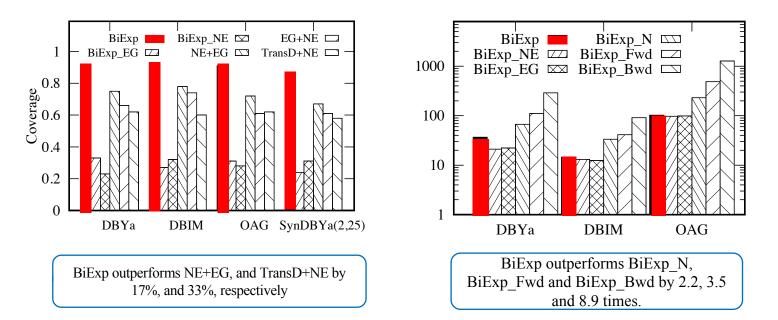
$$cg(\rho,G) = \sum_{s \in \rho} supp(s,G) \cdot cg(s,G)$$

missing element g	Hardness	Description	Time cost
missing answer	NP-hard	Bi-directional algorithm	$O(T \cdot (V ^2 \Sigma)^{\frac{b}{2}}$
missing edge or attribute value		Bi-directional algorithm	$O(T \cdot (V ^2 \Sigma)^{\frac{b}{2}}$
wildcard '_'		Approximation of $6 \cdot \ln(V) + 1$	$O(T \cdot \Sigma V ^2 \frac{B}{c_l})$

Computing Optimal Explanations - Algorithm

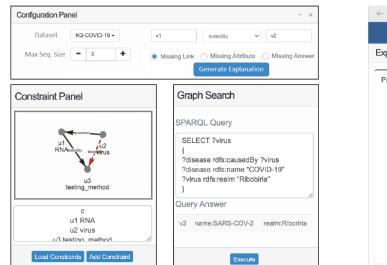
• Our idea: performing a bi-directional exploration

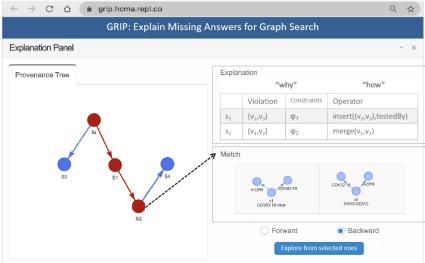
Experimental Setting


Datasets

Name	Description	# of nodes	# of edges	# of equivalent nodes
DBYa	DBPedia+Yago	592K	4.5M	50K
IMDb	DBPedia+IMDb	33K	200K	33.4K
OAG	Aminer+Microsoft academic graph	2.5M	5.2M	106K

- Constraint generation: graph keys and graph association rules generator.
- Query generation: SPARQL benchmark.
- Algorithms Explaining missing values
 - BiExp (optimized), BiExp_N (no pruning strategy)
 - BiExp_NE/BiExp_EG (with Σ contains only keys or association rules)
 - NE+EG/EG+NE (apply all keys and association rules in a batch)
 - TransD+NE (use TransD to replace association rules)
 - BiExp_Fwd/BiExp_Bwd (use only forward or backward search).


Experimental Result


Answering Why questions: efficiency and effectiveness

BiExp improves the coverage of AMIE+Vickey by 22% and is 3.6 times faster;

GRIP: A Demo system

GRIP: Constraint-based Explanation of Missing Answers for Graph Queries

SIGMOD'21 Demo

https://grip.hcma.repl.co/

