
Mining Summaries for Knowledge Graph Search

Qi Song 1 Yinghui Wu 1 Xin Luna Dong2

1Washington State University 2Amazon, Inc.

{qsong, yinghui}@eecs.wsu.edu lunadong@amazon.com

Abstract—Mining and searching heterogeneous and large
knowledge graphs is challenging under real-world resource
constraints such as response time. This paper studies a frame-
work that discover to facilitate knowledge graph search. 1) We
introduce a class of summaries characterized by graph patterns.
In contrast to conventional summaries defined by frequent
subgraphs, the summaries are capable of adaptively summarize
entities with similar neighbors up to a bounded hop. 2) We
formulate the computation of graph summarization as a bi-
criteria pattern mining problem. Given a knowledge graph G, the
problem is to discover k diversified summaries that maximizes
the informativeness measure. Although this problem is NP-hard,
we show that it is 2-approximable. We also introduce an online
mining algorithm that trade-off speed and accuracy, under given
resource constraints. 3) We develop query evaluation algorithms
that make use of the summaries as views. These algorithms
efficiently compute (approximate) answers with high accuracy,
and only refer to a small number of summaries. Our experimental
study verifies that online mining over large knowledge graphs is
feasible, and can suggest bounded search in knowledge graphs.

I. INTRODUCTION

Knowledge graphs have been commonly used to represent

and manage knowledge bases [3], [7]. Real-world knowledge

graphs, unlike familiar relational data, lack the support of well-

defined schema and typing system. It is often hard to identify

relevant data that lead to meaningful answers without any

prior knowledge of the underlying graph. Knowledge search is

also challenging due to the query ambiguity and resource con-

straints (e.g., data allowed to be accessed, response time) [6].

Example 1: Fig. 1 illustrates a sample knowledge graph G

of artists and bands. Suppose a music publisher wants to find

(artists) who are experts in two genres (genre), acted in a

(film), and also collaborated with a band whose manager is

located in the same country as the band. This search can be

represented as a graph query Q [7] as shown in Fig 1. The

answer of Q refers to the set of entities typed with artist in

the subgraphs of G that are isomorphic to Q. In this example,

T.McGraw is the correct answer for Q.

The evaluation of Q over large G is expensive. For example,

the ambiguous label “artist” requires the inspection of all the

entities having the type. Moreover, it is hard for the users to

specify Q without prior knowledge of G.

Observe that the graph G can be described by three small

graph patterns as summaries P1, P2, and P3, as illustrated

in Fig. 1. Each pattern abstracts a fraction of G, by sum-

marizing a group of entities as a single node, along with

their common neighboring entities in G. For example, P1

specifies three artists J.Browne, T.McGraw and D.Yoakam in

G as a single node artist, who are associated with their band,

Fig. 1: Knowledge graph, summary patterns, and graph query.

genre and films as 1 hop neighbors, indicating “musicians”;

and P3 distinguishes the artists T.Hanks and M.Ryan who

are associated with only films and country (i.e., “actors”).

These summaries help the users in understanding G without

a daunting inspection of low-level entities. Better still, they

suggest small “relevant” data for evaluating the query Q.

Indeed, Q can be correctly answered by accessing only the

entities summarized by P1 and P2 in G. �

Although desirable, computing summaries for schema-less,

noisy knowledge graph is nontrivial. Conventional graph sum-

maries are defined by frequent subgraph patterns, which cap-

ture their isomorphic counterparts in a graph [4], [8]. This can

often be an overkill for entities with similar, relevant neighbors

up to a certain hop. For example, the two entities J.Browne and

T.McGraw, along with their relevant 1 hop neighbors should

be summarized by a single summary P1, despite that the two

subgraphs induced by these entities are not isomorphic to

each other. How can we construct summaries in a schema-

less knowledge graph? Moreover, How can we leverage the

summaries to support knowledge graph search?

In this work, we exploit summarization of knowledge graphs

to facilitate efficient query evaluation. We introduce a class

of graph patterns, to summarize similar entities in terms of

their labels and neighborhood information up to a bounded

hop. We present a stream-style mining algorithm to discover

a set of diversified summaries, and introduce query evaluation

algorithm using summaries as “views”.

Related work. We categorize the related work as follows.

Graph summarization. Graph summarization has been studied

to describe the data graph with a small amount of informa-

tion [8], [11], [13]. These approaches can be classified as graph

2016 IEEE 16th International Conference on Data Mining

2374-8486/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDM.2016.24

1215

compression, attribute summarization, (Bi)simulation relation

based summarization and entity summarization. In contrast

to prior work, 1) We introduce lossy summaries to facilitate

efficient knowledge graph query processing, rather than to

restore the exact graph [8], [11]. 2) We measure summaries

by both informativeness and diversity, which is more involved

than MDL-based approaches [8]. 3) In contrast to [11],

our summaries do not require tuning effort on parameters

to achieve approximate summarization. None of these work

addresses diversified summaries as graph patterns.

Answering queries using views: View-based query evaluation

has been shown to be effective for SPARQL queries [9] and

general graph pattern queries [5]. View-based query evaluation

typically requires equivalent query rewriting by accessing

views defined in the same query language. Our work differs in

the following ways: 1) We use d-summaries as views to eval-

uate graph queries defined by subgraph isomorphism, rather

than requiring views and queries to be in the same language;

and 2) We develop feasible summarization algorithms as view

discovery process. These are not addressed in [5], [9].

II. KNOWLEDGE GRAPHS AND SUMMARIES

A. Knowledge Graphs and summaries

Knowledge graphs. We define a knowledge graph G as a

directed labeled graph (V,E, L), where V is a set of nodes,

and E ⊆ V ×V is a set of edges. Each node v ∈ V represents

an entity with label L(v) that may carry the content of v such

as type, name, and attribute values, as found in knowledge

bases and property graphs [7]; and each edge e ∈ E represents

a relationship L(e) between two entities.

We do not assume a standard schema over G, and our

techniques will benefit from such a schema, if exists.

Summaries. Given a knowledge graph G, a summary P of G

is a directed connected graph (VP , EP , LP), where VP (resp.

EP ⊆ VP × VP) is a set of summary nodes (resp. edges).

Each node u ∈ VP (resp. edge e ∈ EP) has a label LP (u)
(resp. LP (e)). Each node u ∈ VP (resp. e ∈ VE) represents a

non-empty node set [u] (resp. edge set [e]) from G.

The base graph of P in G, denoted as GP , refers to the

subgraph of G induced by the node set
⋃

u∈VP

[u], and the edge

set
⋃

e∈EP

[e], for each u ∈ VP and e ∈ EP . Note that a

base graph can be disconnected for a connected summary. In

practice, additional mapping structures can be used to trace

the base graphs for the summaries.

As remarked earlier, a summary should adaptively describe

entities with similar neighborhood up to certain hops in G. To

capture this, we introduce a notion of d-similarity.

d-similarity. Given a graph pattern P and a graph G, a

backward (resp. forward) d-similarity relation is a binary

relation R
↑
d ⊆ VP × V (resp. R

↓
d ⊆ VP × V), where

◦ (u, v) ∈ R
↑
0 and (u, v) ∈ R

↓
0 if LP (u)=L(v);

◦ (u, v) ∈ R
↑
d if (u, v) ∈ R

↑
d−1, and for every parent u′

of u in P , there exists a parent v′ of v in G, such that

LP (u
′, u)=L(v′, v) (i.e., edges (u′, u) and (v′, v) have

the same edge label), and (u′, v′) ∈ R
↑
d−1;

◦ (u, v) ∈ R
↓
d if (u, v) ∈ R

↓
d−1, and for every child u′

of u in P , there exists a child v′ of v in G such that

LP (u, u
′)=L(v, v′), and (u′, v′) ∈ R

↓
d−1.

We define a d-similarity Rd between P and G as the set

of node pairs {(u, v)|(u, v) ∈ R
↑
d ∩ R

↓
d}. A summary P is

a d-summary, if for every summary node u and every node

v ∈ [u]([u] �= ∅), (u, v) ∈ Rd.

Intuitively, for any incoming (resp. outgoing) path ρ of a

summary node u with a bounded length d in a summary P ,

there must exist an incoming (resp. outgoing) path of each

entities summarized in [u] with the same label. That is, P

preserves all the neighborhood information up to length d for

each summary node u in P . Note that for a given summary

P with diameter dm, d ≤ dm,

Given a knowledge graph G and an integer d, we define a

summarization SG of G as a set of d-summaries.

Example 2: Fig. 1 illustrates a summarization of the knowl-

edge graph G that contains three 2-summaries P1, P2, and

P3. The base graph of P1 is induced by the entities as

follows: [genre] = {country, punk}, [film] = {Going Home,

Four Holidays}, [artist] = {J.Browne, D.Yoakam, T.McGraw},
and [band] ={The Eagles, Husker Du, Def Leppard }. Sim-

ilarly, P2 summaries the band Def Leppard and The Eagles,

their associated country and manager, and P3 summaries the

films You’ve got a Mail and Sleepless in Seattle, actors T.Hanks

and M.Ryan and their countries. P1 cannot summarize T.Hanks,

as the latter has no path to a band as suggested in P1. �

Verification of d-summaries. Given a summary P and a

knowledge graph G, the verification problem is to determine

if P is a d-summary of G, and if so, to compute the largest

base graph of P in G. In contrast to its counterpart defined by

frequent subgraphs (NP-hard), the verification of d-summaries

is tractable, as verified below.

Lemma 1: Given a summary P=(VP , EP , LP) and a graph

G=(V,E, L), the verification problem is in O(|VP |(|VP | +
|V |)(|EP |+ |E|)) time. �

We present the detailed proof in [1].

Remarks. d-summaries differ from several other graph pat-

terns like frequent graph patterns, (Bi)simulation-based, dual-

simulation-based and neighborhood-based summaries. More

details are shown in the full version [1].

B. Interestingness measure

We characterize the interestingness of the summaries in

terms of both informativeness and diversity.

Informativeness. I(P) should capture (1) summary size,

and (2) the total amount of information (entities and their

relationships) it encodes in a knowledge graph G. We define

the informativeness function I(·) as:

I(P) = |P | ∗ supp(P,G)

1216

where 1) |P | refers to the size of a summary P , i.e.,
total number of nodes and edges in P , and (2) the support

supp(P,G) is defined as
|GP |
|G| , where |GP | (resp. |G|) refers

to the size (i.e., total number of entities and relationships) in

GP (resp. G). In practice, |P | can be normalized by a summary

size bound bp, which can be specified as a recognition budget

(i.e., the largest summary size a user can understand) [13],

Intuitively, the function I(·) favors larger summaries that have

higher support in G, constrained by a size budget bp.

Summary Diversification. A second challenge is to avoid

redundancy among the summaries [13]. The redundancy may

due to: 1) common “sub-summaries”; and 2) common entities

summarized by two summaries.

Maximal summaries. Most pattern mining tasks employ max-

imal patterns (patterns with no super-pattern that is more

frequent) to avoid redundancy as large common patterns. This

carries over for summaries as graph patterns. Given graph G,

a d-summary P of G is maximal if supp(P) ≥ supp(P ′) for

every d-summaries P ′ derived by adding an edge to P .

Difference of Summaries. To cope with the summary redun-

dancy due to commonly summarized entities, we define a

distance function diff for two summaries P1 and P2 as

diff(P1, P2) = 1−
|VGP1

∩ VGP2
|

|VGP1
∪ VGP2

|

where VGP1
=

⋃

u∈VP1

[u] (resp. VGP2
=

⋃

u∈VP2

[u]); that is,

it measures the Jaccard distance between the set of entities

summarized by P1 and P2 in their base graphs.

One may verify that diff is a metric, i.e., for any three

d-summaries P1, P2 and P3, diff(P1, P2) ≤ diff(P1, P3) +
diff(P2, P3). We quantify entity set difference as a more im-

portant factor of summary difference than edge set difference.

Label/type difference of the entities can also be applied to

quantify weighted VGP
in diff.

C. Diversified Knowledge Graph Summarization

Good summarizations should be both informative and di-

versified. We introduce a bi-criteria function F that integrates

informativeness I(·) and distance diff(·) functions. Given a

summarization SG for knowledge graph G, F is defined as:

F (SG) = (1− α)
∑

Pi∈SG

I(Pi) +
α

card(SG)−1

∑

Pi �=Pj∈SG

diff(Pi, Pj)

where 1) card(SG) refers to the number of summaries it

contains; and 2) α(∈ [0, 1]) is a tunable parameter to trade-off

informativeness and diversification. Note that we scale down

the second summation (diversification) in F (SG) which has
card(SG)(card(SG)−1)

2 terms, to balance out the fact that the first

summation (informativeness) has card(SG) terms.

Based on the quality metrics, we next introduce a graph

summarization problem for knowledge graphs.

Diversified graph summarization. Given a knowledge graph

G, integers k and d, and a size budget bp, the diversified

knowledge graph summarization problem is to compute a

summarization SG of G as a top k summary set, where

◦ each summary in SG is a maximal d-summary with size

bounded by bp; and

◦ the overall quality function F (SG) is maximized.

III. DISCOVERING SUMMARIZATION

We next study feasible mining algorithms for diversified

knowledge graph summarizations.

A 2-approximation. We first outline an algorithm, denoted

as approxDis, that discovers all maximal d-summaries CP with

approximation ratio 2. Given graph G, it invokes a mining

procedure (denoted as sumGen) to enumerate and verify all

maximal d-summaries. It then greedily adds a summary pair

{P, P ′} from CP to SG that maximally improves a function

F ′(SG), where

F ′(P, P ′) = (1− α)(I(P) + I(P ′)) + α ∗ diff(P, P ′)

This step is repeated �k2 times to obtain top-k d-summaries

SG. If k is odd, it selects an additional summary P that

maximizes F (SG ∪ {P}) after �k2 rounds of selection. One

may verify approxDis identifies CP with approximation ratio

2. We present the details of approxDis and sumGen in [1].

The algorithm approxDis needs to wait until all the sum-

maries are verified, which may not be feasible when G is

large. We can do better. Lemma 1 indicates that the verification

cost is not a major bottleneck (contrast this to its frequent

subgraph counterpart [4]). This suggests an “stream-style”

mining process over a stream of (quickly verified) summaries.

Better still, (1) the algorithm can be interrupted to report

the summarization upon request; and (2) It approximates the

optimal answer over the “seen” summaries.

Below we first introduce the auxiliary structure used by the

algorithm, followed by the actual algorithm.

Auxiliary structure. The algorithm maintains 1) a set CP of

the maximal summaries verified by sumGen; and 2) a set L of

ranked lists, one list Li for each maximal summary Pi ∈ CP .

Each list Li caches the top-lp (n ∈ [1, k − 1]) summary pairs

(Pi, Pj) in CP that have the highest F ′(Pi, Pj) score, where

F ′(·) refers to the revised quality function. It bounds the size

of the list Li based on a tunable parameter lp, which can be

adjusted as per the available memory.

Stream-style Summarization. The algorithm, denoted as

streamDis, is illustrated in Fig. 2. Given G, integer k, and

two threshold bp and lp, it first initializes SG, CP , L, and a

flag termination (set as false) for the termination condition

(line 1). It then iteratively conducts the following steps.

1) It invokes sumGen to fetch a newly generated summary

Pt (line 3). The procedure sumGen is modified to return one

verified summary at a time, instead of waiting and returning

a set of summaries in a batch.

2) It updates CP and the list L (lines 4-6) based on the newly

fetched summary Pt. For each summary Pi ∈ CP , it computes

the quality score F ′(Pi, Pt), and updates the top-lp list Li of

1217

Algorithm streamDis

Input: a graph G, integer k,
threshold lp, bp;

Output: summarization SG upon request.

1. Initialization: SG:=∅; CP := ∅; termination:=false; and L:=∅;
2. while there is a next d-summary in the stream do

// fetch a new summary (bounded by bp) from the stream
3. summary Pt := sumGen (G, k);
4. CP :=CP ∪ {Pt};
5. for each Li ∈ L do

6. Update top lp summary pairs in Li that maximizes F ′(·)
;

7. Update SG with top � k

2
� summary pairs in L;

8. if there is a request of summarization then
9. return SG;
10. return SG;

Fig. 2: Algorithm streamDis

Pi by replacing the lowest scoring pair (Pi, P
′) with (Pi, Pt),

if F ′(Pi, P
′)<F ′(Pi, Pt).

3) It incrementally updates the top-k summaries SG (lines 7),

with top �k2 pairs of summaries with maximum quality F ′(·)
from the list set L. If |SG| < k, a summary P ∈ CP \SG that

maximizes the quality F (SG ∪ {P}) is added to SG.

At any time, it returns the current SG upon request (lines 8-

9). The above process is repeated until no new pattern can be

fetched from sumGen.

Example 3: Consider the sample graph G in Fig. 1. Let bq=8,

k=2, d=2 and α=0.1. streamDis computes a summarization

SG as follows. (1) In round 1, it invokes sumGen to discover

a maximal 2-summary, e.g., P3, and initializes CP and SG
with P3. (2) In round 2, it discovers a new 2-summary P2,

verifies F ′(P2, P3) as 0.9 ∗ (0.20+ 0.18) + 0.1 ∗ 0.90 = 0.43,

and updates L2={<(P2, P3),0.43}, L3= {<(P3, P2),0.43},
and SG as {P2, P3}. (3) In round 3, it discovers P1, and

verifies F ′(P1, P2)= 0.62 and F ′(P1, P3)=0.61. L1, L2, and

L3 are hence updated to (P1, P2), (P2, P1) and (P3, P1)
respectively. Hence, it updates SG to {P1, P2}. As all the

maximal summaries within size 8 are discovered, streamDis

terminates and returns SG={P1, P2}. �

Analysis. The algorithm streamDis approximates the optimal

answer with approximation ratio 2 over the “seen” summaries

at any time. For complexity, it takes (measured by input size)

(1) O(Nt ∗bp(bp+ |V |)(bp+ |E|)+
k
2N

2
t) time, and (2) O(k ∗

Nt + |SG|) space, where Nt is the number of summaries it

has verified upon interrupted, and |SG| refers to the total size

of summaries and their base graphs. We present the detailed

analysis in [1].

Remarks. “Anytime approximation” is desirable and, never-

theless, “weaker” than an anytime quality guarantee w.r.t. to

the optimal answer over the entire input [2]. The latter requires

the prior knowledge of error distribution. We do not make such

assumptions, and defer this study to future work.

IV. KNOWLEDGE GRAPH SEARCH WITH SUMMARIES

We next show that d-summaries can suggest relevant data

and support fast knowledge graph search within bounded

resource, by developing such a query evaluation algorithm.

“Summaries+Δ” Scheme. Given a query Q, a knowledge

graph G and a summarization SG, our query evaluation

algorithm, denoted as evalSum, has the following two steps.

◦ It selects a set of summaries from SG with “materialized”

base graphs that contains the potential answers of Q as

much as possible, and

◦ It refers to the base graphs to compute the (partial) answer

Q(G), and fetches bounded amount (Δ) of data from G to

complete the computation of Q(G), only when necessary.

We next introduce the summary selection strategy.

Summary Selection. Given a query Q and a summarization SG,

the summary selection aims to find a set P of n summaries

in SG, such that the maximum fraction of Q is covered

by P , with a bounded total size of base graphs B. To this

end, the selection procedure greedily adds the summaries P
that “maximally” covers Q, and have small base graphs in

G. It dynamically updates a rank r(P) =
|EQP

\Ec|

|GP |
for the

summaries in SG, where (1) EQP
refers to the edge set of

the base graph QP , induced by the d-similarity between the

summary P and query Q (as a graph); (2) Ec refers to the

edges of Q that has been “covered”, i.e., already in a base

graph of a selected summary P ′ ∈ P . In each round of

selection, a summary with highest r(P) is added to P , and

the ranks of the remaining summaries in SG are dynamically

updated. The process repeats until n patterns are selected, or

the total size of the base graphs reaches B.

The selection process can be done efficiently in

O(card(SG)bq(bq + |Vp|)(bq + |Ep|)) time, where bq and

|Vq|, |Eq| are typically small; Better still, it guarantees the

approximation ratio (1 − 1
e

) for optimal summaries under

budget B. We present the detailed proof in [1].

V. EXPERIMENTAL EVALUATION

Using real-world and synthetic knowledge graphs, we con-

ducted three sets of experiments to evaluate 1) Performance of

the summary mining algorithms approxDis and streamDis; 2)

Effectiveness of the algorithm evalSum for query evaluation;

and 3) Effectiveness of summaries, using a case study.

Experimental Setting. We used the following setting.

Datasets. We use three real-life knowledge graphs: 1) DB-

pedia1 consists of 4.86M nodes and 15M edges, where each

entity carries one of the 676 labels (e.g.,’Settlement’, ’Person’,

’Building’); 2) YAGO2, a sparser graph compared to DBpedia

with 1.54M nodes and 2.37M edges, but contains more diver-

sified (324343) labels; and 3) Freebase (version 14-04-14)3,

with 40.32M entities, 63.2M relationships, and 9630 labels.

We employ BSBM4 e-commerce benchmark to generate syn-

thetic knowledge graphs over a set of products with different

1http://dbpedia.org
2http://www.mpi-inf.mpg.de/yago
3http://freebase-easy.cs.uni-freiburg.de/dump/
4http://wifo5-03.informatik.uni-mannheim.de/bizer/

berlinsparqlbenchmark/

1218

100

101

102

103

104

105

Yago DBpedia Freebase

Ti
m

e(
Se

co
nd

s)

approxDis
streamDis

heuDis
GRAMI

(a) Real-world datasets

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

A
cc

ur
ac

y

Time (Seconds)

lp=63
lp=32
lp=16
lp=8
lp=4

heuDis

(b) streamDis: quality vs. time

Fig. 3: Performance of summarization

types, related vendors, consumers, and views. The generator is

controlled by the number of nodes (up to 60M), edges (up to

152M), and labels drawn from an alphabet Σ of 3080 labels.

Queries. To evaluate evalSum algorithm, we generated 50 sub-

graph queries Q=(Vq, Eq, Lq) over real-world graphs with size

controlled by (|Vp|, |Ep|). We inspected meaningful queries

posed on the real-world knowledge graphs, and generated

queries with labels drawn from their data (domain, type,

and attribute values). For synthetic graphs, we generated 500

queries with labels drawn from BSBM alphabet. We generate

queries with different topologies (star, trees, and cyclic pat-

terns) and sizes (ranging from (4,6) to (8,14)).

Algorithm. We implemented the following algorithms in Java:

1) Summarization algorithms approxDis and streamDis, com-

pared with: a) heuDis, a counterpart of streamDis that main-

tains SG over pattern streams following [10]. Each time a

summary P is seen, it swaps out a summary P ′ in SG if

F (SG \ {P
′} ∪ {P}) > F (SG); and b) GRAMI, that uses an

open-source tool [4] to discover frequent subgraph patterns as

summaries. Here the base graph is computed as the union of

all the subgraphs isomorphic to the summary in G.

2) Query evaluation algorithm evalSum, compared with the

following variants: a) evalRnd, that performs random selec-

tion; b) evalGRAMI, that employs frequent graph patterns

mined by GRAMI; and c) evalNo that evaluates Q by directly

employing an optimized subgraph isomorphism algorithm

in [12]. We also allow a resource bound Δ to be posed

on evalRnd and evalGRAMI as in our “summary+Δ” scheme,

to allow them to return approximate answers by fetching at

most Δ additional data from G.

We ran all our experiments on a linux machine powered by

an Intel 2.4 GHz CPU with 128 GB of memory5. We ran each

experiment 5 times and report the averaged results.

Overview of Results. We summarize our findings below.

1) It is feasible to summarize large real-world graphs with d-

summaries (Exp-1). Our algorithm streamDis produces high-

quality summarization (e.g., at least 99% accurate with respect

to its 2-approximation counterpart approxDis) within a smaller

time budget (90 seconds), on YAGO with 3.91 million enti-

ties and relationships. It is orders of magnitude faster than

summarizing by mining frequent subgraph patterns (GRAMI).

2) The d-summaries significantly improves the efficiency of

5Source code: https://github.com/songqi1990/KnowGraphSum

query evaluation (Exp-2). For example, evalSum is 40 times

faster than evalNo (without using summarization) over YAGO.

It is 2.5 times faster than its counterpart using frequent

subgraph patterns as views. Moreover, the summary selection

is effective: evalSum outperforms evalRnd (that randomly

select summaries) by 2 times, using at most 64 summaries.

Finally, it does not take much additional cost (Δ ≤ 5% of

graph size) to find exact answers.

3) Our case study shows that summarization captured by

d-summaries is concise, and provides a good coverage for

diversified entities (Exp-3).

We next report the details of our findings.

Exp-1: Effectiveness of summary discovery. We fixed pa-

rameter α=0.5 for diversification, k=64, the summary size

bound bp=6, number of hops d = 1 and lp=k-1 for this

experiment, unless otherwise specified. In addition, we set a

support threshold θ=0.005 to find frequent maximal patterns

in the summary mining procedure sumGen used by approxDis,

streamDis, and heuDis. For the real-life datasets, we also

excluded “overly general” (top 2% frequent) labels such as

“thing”, “place”, and “person”.

Efficiency of Summarization. We evaluate the efficiency of

approxDis, streamDis, heuDis, and GRAMI over the

real-world knowledge graphs. For the two anytime algo-

rithms streamDis and heuDis, we report their convergence

time. For GRAMI, we carefully adjusted a support threshold

to allow the generation of patterns with similar label set

and size to those from approxDis. As shown in Fig.3(a), 1)

streamDis and approxDis are both orders of magnitude faster

than GRAMI. The latter does not run to completion within 10
hours over both DBpedia and Freebase; 2) Performance of

streamDis is comparable to that of heuDis, and streamDis is

3-6 times faster than approxDis with comparable accuracy;

3) streamDis is feasible over large knowledge graphs. For

example, it takes less than 100 seconds to produce high-quality

summaries by verifying only 64 summaries for YAGO.

Using larger synthetic graphs, we evaluated the scala-

bility of streamDis, by varying |G| from (10M, 27M) to

(60M, 152M) (not shown, see details in [1]). The algo-

rithms streamDis and heuDis scale better with larger |G|
compared with GRAMI due to their speed of convergence.

In contrast, GRAMI does not run to completion in 10 hours

with graphs of size (10M, 27M).

Anytime performance. We evaluate the “anytime” perfor-

mance of streamDis and heuDis. We define the accuracy of

streamDis as
F (SGt

)

F (SG) , where SGt
refers to the summaries

returned by streamDis at time t, and SG refers to the one

returned by approxDis. The accuracy of heuDis is defined

similarly. Specifically, we report the “convergence” time of

streamDis and heuDis when the accuracy reaches 99%, for a

fair comparison with approxDis and GRAMI.

Fig. 3(b) shows the accuracy of streamDis and heuDis

over YAGO w.r.t. time t and cache bound lp. 1) The quality of

summaries returned by streamDis increases monotonically as

1219

101

102

103

104

105

(37M) (72M) (107M) (142M) (176M)

T
im

e(
se

co
nd

s)

evalNo
evalGRAMI

evalRnd
evalSum(Δ=1.5%)

evalSum(Δ=0)

(a) evalSum: Varying |G|

0.5

0.6

0.7

0.8

0.9

1

1.5% 4.5% 7.5% 10.5%

A
cc

ur
ac

y

Δ

evalGRAMI
evalRnd
evalSum

evalSum(Δ=0)

(b) Accuracy w.r.t. Δ

Fig. 4: Efficiency and Accuracy of evalSum

t and lp increases; 2) Convergence speed of streamDis to near-

optimal summarization improves with increasing lp values as

more summary pairs are stored and compared. Remarkably,

streamDis converges in less than 100 seconds when lp=63;

and 3) heuDis converges faster than streamDis, but stops at

accuracy 0.9 on average. These results verify that streamDis

provides a principled way to trade-off accuracy and time, and

converges early by processing a small number of summaries.

Remarkably, streamDis converges after processing 50 patterns

instead of 280 patterns in total when lp=63.

Exp-2: Effectiveness of evalSum. We evaluate the ef-

ficiency of evalSum, and compare it with evalSum

(Δ=0), evalRnd, evalGRAMI, and evalNo.

Varying |G|. We evaluated the scalability of evalSum with

large synthetic graphs. We set |Q|=(6,10), card (SG)=500,

and varied the size of synthetic graph |G| from (10M,27M)

to (50M,126M). We make the following observations from

Fig. 4(a): 1) all algorithms take longer time for large |G| as

expeceted; (2) evalSum and evalSum (Δ=0) scale better than

all the other algorithms. evalSum is reasonably efficient: when

|G|=(10M,27M), evalSum takes 35 seconds.

Accuracy. We evaluated the accuracy of the query answers

produced by four evaluation algorithms. Let Q(G)A be the

set of node and edge matches returned by a query evaluation

algorithm A, and Q(G) the exact match set. We define the

accuracy of algorithm A as the Jaccard similarity
Q(G)A∩Q(G)
Q(G)A∪Q(G) .

For evalNo, the accuracy is 1. As shown in Fig 4(b), all

algorithms perform better with larger Δ, and evalSum achieves

highest accuracy with Δ = 1.5%. Remarkably, evalSum can

get 100% accuracy with 7.5% of original graph, however,

evalGRAMI needs more data compared to evalSum.

Exp-3: Case study. We performed case studies to test the

number of summaries needed to “cover” all the entity types

for 50 sampled ambiguous keywords from DBpedia (e.g.,

“waterloo”, “Tesla”, “Avatar”). Each keyword has on average

4 different types. We observed that for highly diverse sum-

marization (e.g., α = 0.9), less number of summaries (e.g.,

k = 9) are needed to cover all the entity types. For all cases,

it takes at most 15 summaries to cover all the types for each

keyword. In contrast, most of the summaries from GRAMI are

redundant small patterns, and cannot cover the entity types of

keywords even when k=64.

Three real-life 2-summaries for keyword “waterloo” discov-

ered from DBpedia are shown in Fig. 5, which distinguish

����������

P4 �	�	�
���	�
������

Fig. 5: Real-life Summaries: DBpedia.

“waterloo” as Battle entities (P1), University (P2), and Films

(P3). These summaries suggest intermediate keywords as

enhanced queries (e.g.,Military Person); and can also suggest

answers for e.g., Précis queries [13] that find diversified facts

of a single entity.
VI. CONCLUSIONS

We proposed a class of d-summaries, and developed feasible

summary mining algorithms that summarize large, schema-

less knowledge graphs. We also developed efficient query

evaluation algorithm by selecting and accessing a small num-

ber of summaries and their base graphs. Our experimental

results verified that our algorithms efficiently generate concise

summaries that significantly reduces query evaluation cost in

schema-less knowledge graphs. Our future work is to enable

query suggestion and resource-bounded query evaluation by

referring to summaries, for more types of query classes.

ACKNOWLEDGMENT

This research is supported by the National Science Foun-

dation under grant BIGDATA-1633629 and Google Faculty

Research Award.

REFERENCES

[1] Full version. http://eecs.wsu.edu/∼qsong/Files/paper/ICDM2016Full.pdf.
[2] B. Arai, G. Das, D. Gunopulos, and N. Koudas. Anytime measures for

top-k algorithms. In VLDB, pages 914–925, 2007.
[3] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,

T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In KDD, 2014.

[4] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. Grami: Fre-
quent subgraph and pattern mining in a single large graph. Proceedings
of the VLDB Endowment, 7(7):517–528, 2014.

[5] W. Fan, X. Wang, and Y. Wu. Answering graph pattern queries using
views. In ICDE, 2014.

[6] W. Fan, X. Wang, and Y. Wu. Querying big graphs within bounded
resources. In SIGMOD, 2014.

[7] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum.
Naga: Searching and ranking knowledge. In ICDE, pages 953–962,
2008.

[8] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. Vog: Summarizing
and understanding large graphs. In SDM, 2014.

[9] W. Le, S. Duan, A. Kementsietsidis, F. Li, and M. Wang. Rewriting
queries on SPARQL views. In WWW, 2011.

[10] E. Minack, W. Siberski, and W. Nejdl. Incremental diversification for
very large sets: a streaming-based approach. In SIGIR, 2011.

[11] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with
bounded error. In SIGMOD, 2008.

[12] X. Ren and J. Wang. Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. Proceedings of the VLDB
Endowment, 8(5):617–628, 2015.

[13] M. Sydow, M. Pikuła, and R. Schenkel. To diversify or not to diversify
entity summaries on rdf knowledge graphs? In Foundations of Intelligent
Systems. 2011.

1220

