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Searching real world graph data

» Knowledge Graph G: used to represent knowledge bases
= Graph query Q: graph with types on each node

Graph Query
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Searching real world graph data

» Knowledge Graph G: used to represent knowledge bases

= Graph query Q: graph with types on each node
= Answer Q(G): the set of entities with certain type in the subgraphs of

G that are isomorphic to Q.
» Challenges: usability & scalability

Graph Query
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Use summarization to facilitate query evaluation

» Graph summarization: describe the data graph with a small amount of

information
Graph Query Summaries
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Use summarization to facilitate query evaluation

» Graph summarization: describe the data graph with a small amount of
information

= Summary based query evaluation: Query Q can be answered by
accessing only the entities summarized by “relevant” patterns

Graph Query Summaries
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Use summarization to facilitate query evaluation

» How to construct summaries in a schema-less KG?
« Traditional isomorphism based frequent pattern mining may not work
* D-summaries: summarize similar entities up to a bounded hop d

= How to leverage the summaries to support KG search?
* How to measure the quality of KG summarization

« Diversified graph summarization problem and approximate algorithms
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D-summavries

» Subgraph isomorphism VS d-hop dual simulation
* Relax 1-1 to many-many relation
 Bounded match with hop d
* Dual-simulation: parent-children matching
« Quadratic time solvable

FOUR
HOLIDAYS

4/11



2 1B

Diversified knowledge graph summarization

* Problem definition:
« Given: knowledge graph G, integers k and d

« Output: a set of k d-summaries that maximizes the bi-criteria quality
function.

= QObjective function

F(S;)=(-a) Y I(B)+—————— 3 diff(P,P)

PES; / card(S;) -1 P=P,ES;

Informativeness Difference
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Diversified knowledge graph summarization

= 2-approximation algorithm approxDis:

« Mining frequent patterns based on d-similarity

« Calculate pair-wise score and select top score pairs

* (3 Have to wait until all frequent patterns are generated
= Anytime algorithm streamDis:

« Maintain a cache during pattern mining

k
O(N, b (b, +JV|)(19 +E)+=N;)
« @ Canbe mterrupte atanytlme %
* S Maintain 2-approximation (better than pure heuristic)
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“‘Summaries + A" scheme for query evaluation

= Pattern selection
» |teratively selects a view with minimum weight
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= Query answering evalSum: “Summaries + A”

7/11



9 8

Experimental study

» Datasets: real-world and synthetic knowledge graphs
* Yago: 1.54M nodes, 2.37M edges, 324k labels
 DBPedia: 4.86M nodes, 15M edges, 676 labels
* Freebase: 40M nodes, 63M edges, 9630 labels
« BSBM: up to 60M nodes, 152M edges and 3080 labels

= Algorithms:

« Summarization: approxDis, streamDis and its counterpart heuDis,
GRAMI

* Query evaluation: evalSum, evalRnd (performs random selection),
evalGRAMI (employs FPGs mined by GRAMI), evalNo (directly
employ subgraph isomorphism algorithm)

* M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. GRAMI: frequent subgraph and

pattern mining in a single large graph. PVLDB, 7(7):517-528, 2014.

Source code: https://github.com/songqi1990/KnowGraphSum
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Effectiveness of summary discovery

e Faster convergence with larger cache size
 Cachesize in general small to guarantee fast [
convergence.

Orders of magnitude faster than GRAMI ]
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Effectiveness of evalSum

I E I |
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10 evalGRAM| —e— | o
= evalRnd —=— -
I evalSum(A=1.5%) —« § 08
g 10 evalSum(A=0) —x— 1 8 [x " " -
a 0.7
— (@]
2 g 3
£10 evalGRAMI —e—
= 0.6
L evalRnd —— _
! evalSum —x—
10 | | | | 0.5 | - evalSum(A=0) —*—
(37TM) (72M)  (107TM) (142M) (176M) 1.5% 4.5% 7.5% 10.5%
Time w.r.t |G| Accuracy w.r.t A

40 times faster than evalNo
Little additional cost (A < 5% of graph size) to
find exact answers.
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Conclusion and future work

* Mining Summaries for Knowledge Graph Search:
« We proposed a class of d-summaries

« We developed feasible summary mining algorithms and efficient
query evaluation algorithm

« We show that our algorithms efficiently generate concise summaries
that significantly reduces query evaluation cost

= Future work
« Distributed query evaluation over different information source

* Query suggestion, data integration, knowledge fusion using views
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