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ABSTRACT

Querying heterogeneous and large-scale knowledge graphs are
typically expensive. This paper studies a parallel graph summariza-
tion framework to facilitate knowledge graph search. (1) We pro-
pose a class of reduced summaries characterized by graph patterns,
which are capable of summarizing entities in terms of their neigh-
borhood similarity up to a certain hop. (2) We study a bi-criteria
diversi�ed summarization problem. Given a knowledge graph G,
it is to discover top-k diversi�ed reduced summaries with maxi-
mized quality in terms of both informativeness and diversity. (3)
We show that diversi�ed summarization is feasible for large knowl-
edge graphs, by developing a parallel approximation algorithm
with quality guarantees. We show that the algorithm is parallel
scalable, which ensures the feasibility of summarization in large
graphs. Using real-world graphs, we experimentally verify the ef-
�ciency of our sequential and parallel summarization algorithms,
and query evaluation guided by summarization.

1 INTRODUCTION

Knowledge graphs are routinely used to represent entities and
their relationships in knowledge bases [2, 9]. Unlike relational
data, real-world knowledge graphs lack the support ofwell-de�ned
schema and typing system. To search knowledge graphs, a number
of query processing techniques are proposed [9, 14, 18, 28]. Nev-
ertheless, it is hard for end-users to specify precise queries that
will lead to meaningful answers without prior knowledge of the
underlying graph. Searching knowledge graphs is challenging due
to the ambiguity in queries, the inherent computational complex-
ity (e.g., subgraph isomorphism [9, 18]) and possible resource con-
straints (e.g., data allowed to be accessed, response time) [6].

Example 1: Fig. 1 illustrates a sample knowledge graphG of artists
and bands. Suppose a music publisher wants to �nd artistswho are
experts in two genres (genre), acted in a film, and also collaborated
with a band whose manager is located in the same country as the
band. This search can be represented as a graph query Q [9, 14, 18,
28] as shown in Fig 1. The answer of Q refers to the set of entities
typed with an artist in the subgraphs of G that are isomorphic to
Q . In this example, T.McGraw is the correct answer for Q .

It is costly to evaluate Q when G is large. For example, the am-
biguous label “artist” requires the inspection of all the entities hav-
ing the type. It is also hard for the users to specifyQ without prior
knowledge of G. Moreover, subgraph isomorphism is NP-hard.

Observe that graphG can be “summarized” by three small graph
patterns P1, P2 and P3, as illustrated in Fig. 1. Each pattern ab-
stracts a fraction ofG, by representing a group of entities as a single
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Figure 1: Knowledge graph, summaries and graph query.

node, along with their common neighboring entities in G. For ex-
ample, P1 speci�es three artists J.Browne, T.McGraw and D.Yoakam in
G as a single node artist, who are associated with their band, genre
and films, indicating “musicians”; and P3 distinguishes the artists
T.Hanks and M.Ryan who are associated with only film and country

(i.e., “actors”). These concise summaries help the users in under-
standing G without a daunting inspection of low-level entities.

One can further use these patterns as “views” [4, 13] to speed
up knowledge search. For example, Q can be correctly answered
by only referring to the entities summarized by P1 and P2 in G, as
all the matches of Q are contained in those entities. ✷

The above example suggests that graph patterns can bene�t
knowledge search by suggesting (and can be directly queried as) in-
terpretable “views”. Although desirable, computing summaries is
nontrivial. Summaries de�ned by frequent subgraphs [3, 10, 11, 14]
can often be an overkill for entities with similar neighbors up to a
certain hop. For example, the subgraphs induced by J.Browne and
T.McGraw along with their 1 hop neighbors (Fig. 1) should be sum-
marized by P1, despite that they are not isomorphic to each other.
Mining summaries is also expensive when G is large.

Contributions. This paper studies a new parallel graph summa-
rization framework to compute diversi�ed summaries for knowl-
edge graph query evaluation.

(1) We review a class of summaries namely, d-summaries [21], and
introduce reduced d-summaries. A d-summary is characterized by
ad-matching relation, which encodes a lossy representation of sim-
ilar entities and their d-hop neighbors. A reduced summary en-
codes a minimum representation of all equivalent summaries.



We show that d-summary is feasible in practice, by studying
the veri�cation and reduction problems. The veri�cation problem
is to check whether a graph pattern is a d-summary. The reduction
problem computes a reduced counterpart of a summary. We show
that both problems are tractable (Section 2) for d-summaries.

(2) We study a bi-criteria function to quantify the quality of sum-
maries that integrates both informativeness and diversity mea-
sures (Section 3). Based on the quality function, we introduce the
problem of diversi�ed graph summarization. Given a knowledge
graph G, integers k and d , the problem is to compute a set of k
d-summaries that maximizes the bi-criteria function.

(3) The diversi�ed summarization problem is (not surprisingly)NP-
hard. Nevertheless, we show that it is feasible to discover diversi-
�ed summaries in large graphs, by developing a new parallel diver-
si�ed summarization algorithm (Section 4). The algorithm has the
parallel scalability, a guarantee to reduce response timewith the in-
crease of processors. This ensures the feasibility of summarization
in large graphs by adding processors.

(4) Using real-world knowledge bases and synthetic graphs, we
experimentally verify the e�ectiveness and e�ciency of our sum-
marization and query-evaluation algorithms (Section 5). We found
that it is feasible to compute diversi�ed summaries over real-world
knowledge graphs. Our case studies also veri�y that summary-
based querying supports “cross-domain” querying by accessing
summaries from multiple knowledge bases.

Related work. We categorize the related work as follows.

Graph summarization. Graph summarization has been studied to
describe the data graph with a small amount of information [11,
17, 19, 23, 25, 26]. (1) Graph compression aims to compress graphs
within a bounded error by minimizing an information complex-
ity measure [11, 17, 19], e.g., Minimum Description Length (MDL).
The algorithm in [11] employs clustering and community detec-
tion to describe the data graph with prede�ned frequent struc-
tures (vocabulary) including stars and cliques. (2) Summariza-
tion techniques attempt to construct summaries over attributed
graphs, where nodes with similar attributes are clustered in a con-
trolled manner using parameters such as participation ratio [25].
(3) (Bi)simulation relation is adoptedto group paths carrying same
labels up to a bounded length [26]. It summarizes the entities only
when they are pairwise similar, which can be an overkill for knowl-
edge graphs. Entity summarization [23] generates diversi�ed an-
swers for entity search instead of general queries.

Our work di�ers from these works in the following ways:
(1) We introduce lossy summaries for knowledge query evalua-
tion, rather than to compress the graphs [11, 17, 19]. (2) We dis-
cover summaries to access single graphs rather than for query an-
swers [23, 26], and it can be applied for diversi�ed result summa-
rization. (3) The summaries are measured in terms of both infor-
mativeness and diversity, which is more involved than MDL-based
measures [17, 19]. (4) In contrast to [17, 25], our summary model
requires little parameter tuning e�ort. In addition, diversi�ed sum-
maries are not addressed in these works.

Parallel graph pattern mining. Frequent subgraph patterns can be
mined from a single graph to describe large graphs [3, 11].

Redundancy-aware mining is studied for general patterns [27].
Type-based summarization is applied to facilitate keyword search
in RDF graphs [14]. In contrast, we capture summaries in terms of
approximate pattern matching rather than strict subgraph isomor-
phism [3, 14]. Bi-criteria summarization that integrates diversi�ca-
tion and informativeness is not addressed in these works.

Parallel algorithms have been developed for pattern min-
ing in terms of subgraph isomorphism, for transactional graph
databases [1] or single graph [24]. Vertex-centric models (e.g.,
Pregel [16] and GraphLab [15]) are developed to parallelize sequen-
tial graph query processing. These methods can not be readily ap-
plied for diversi�ed summarization in a single graph. In contrast
to these works, (1) Our methods discover diversi�ed graph sum-
maries in terms of approximate pattern matching, and (2) We pro-
pose an algorithm with parallel scalability guarantee which has
not been mentioned in previous works.

Querying using views: View-based query evaluation has been
shown to be e�ective for SPARQL queries [13] and general graph
pattern queries [4]. It requires equivalent query rewriting by ac-
cessing views de�ned in the same query language. In contrast, we
show that d-summaries can be used as views for graph queries de-
�ned by subgraph isomorphism, rather than requiring queries to
be in the same semantics. We also develop parallel summarization
algorithms. These are not addressed in [4, 13].

2 KNOWLEDGE GRAPH SUMMARIZATION

2.1 Graphs and Summaries

We start with the notions of knowledge graphs and summaries.

Knowledge graphs. A knowledge graph G is a directed labeled
graph (V ,E,L) with a set of nodes V and a set of edges E ⊆ V ×V .
Each node v ∈ V has a label L(v) that may carry the content of
v (e.g., type, name, attribute values) as found in knowledge bases
and property graphs [9]; and each edge e ∈ E has a label L(e).

We do not assume a standard schema overG, and our techniques
will bene�t from such a schema, if exists. Fig. 1 depicts a fraction
of a typed knowledge graph. Each entity (e.g.,J.Browne) has a label
that carries its type (e.g.,artist), and connects to other typed entities
(e.g.,band) via labeled relationships (e.g., collaborated).

Summaries. We review the notions of summaries in [21] below.
Given a knowledge graph G, a d-summary P of G is a connected
graph pattern (VP ,EP ,LP ), where VP (resp. EP ⊆ VP × VP ) is a
set of summary nodes (resp. edges). Each node u ∈ VP (resp. edge
e ∈ EP ) has a label LP (u) (resp. LP (e)), and represents a non-empty
node set [u] (resp. edge set [e]) fromG.

d-matching [21]. Given a pattern P and a graphG, a backward (resp.

forward) d-matching from P to G is a nonempty binary relation

R
↑

d
⊆ VP ×V (resp. R↓

d
⊆ VP ×V ), where

◦ (u,v) ∈ R
↑
0 and (u,v) ∈ R

↓
0 if LP (u)=L(v);

◦ (u,v) ∈ R
↑

d
if (u,v) ∈ R

↑

d−1
, and for every parent u ′

of u in P , there exists a parent v ′ of v in G, such that
LP (u

′
,u)=L(v ′

,v) (i.e., edges (u ′,u) and (v ′
,v) have the

same edge label), and (u ′,v ′) ∈ R
↑

d−1
;
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◦ (u,v) ∈ R
↓

d
if (u,v) ∈ R

↓

d−1
, and for every childu ′ ofu in P ,

there exists a childv ′ ofv inG such that LP (u,u
′)=L(v,v ′),

and (u ′,v ′) ∈ R
↓

d−1
.

We de�ne a d-match Rd between P and G as the set of node

pairs {(u,v)|(u,v) ∈ R
↑

d
∩ R

↓

d
}. We say P is a d-summary of G

(denoted as P ∼ G), if for every summary node u and every node
v ∈ [u]([u] , ∅), (u,v) ∈ Rd . The base graph of P in G, denoted as
GP , refers to the subgraph of G induced by the node set

⋃

u ∈VP

[u],

and the edge set
⋃

e ∈EP

[e], for each u ∈ VP and e ∈ EP .

Intuitively, a d-summary P guarantees thatG preserves the par-
ent and child relation of each summary node up to hopd . Note that
a base graph can be disconnected for a connected summary. Given
a knowledge graph G and an integer d , a summarization SG of G
is a set of d-summaries. In practice, additional mapping structures
can be used to trace the base graphs for the summaries.

Example 2: Fig. 1 illustrates a summarization of the knowl-
edge graph G, which contains three 2-summaries P1, P2, and
P3. The base graph of P1 contains the entities: [дenre]={country,
punk}, [f ilm]={Going Home, Four_Holidays}, [artist]={T.McGraw,
D.Yoakam, J.Browne}, [band]={The_Eagles, Husker_Du,Def_Leppard}.
Note that P1 cannot summarize T.Hanks as the latter has no path to
a band as required by P1. Similarly, P2 summaries band Def_Leppard

and The_Eagles, and their associated country and manager in G, and
P3 summaries You’ve got a Mail and Sleepless in Sea�le, actors T.Hanks
and M.Ryan and their countries. ✷

Summary veri�cation. Given a graph pattern P , a knowledge
graph G and an integer d , the veri�cation problem is to check if P
is ad-summary ofG, and if so, identify the largest base graphGP of
P inG. In contrast to its counterpart de�ned by frequent subgraphs
(NP-hard), the veri�cation of d-summaries is tractable.

Lemma 2.1. Given a summary P=(VP ,EP ,LP ), an integer d , and

a graph G=(V ,E,L), it is in O(|VP |(|VP | + |V |)(|EP | + |E |)) time to

verify if P is a d-summary of G .

As a proof of Lemma. 2.1, we outline an algorithm, denoted as
valiSum, that determines if P=(VP ,EP ,LP ) is a d-summary in poly-
nomial time. The algorithm valiSum �rst initializes a match set

[u]={v |(u,v) ∈ R
↑
0 ,v ∈ V } for each nodeu ∈ VP . It then re�nes the

match sets as follows. (1) It �rst computes the forward d-similarity

relation R
↓

d
. For each edge (u ′,u) ∈ EP , it iteratively removes all

the nodes v ′ in [u ′] if there exists no child of v ′ in G such that

(u,v) ∈ R
↓
i−1, for i ∈ [1,d]. This process repeats until no change

can be made to [u], for each node u in VP . (2) It continues to re-
�ne the match sets derived from (1), by removing the nodes that
do not satisfy the backward d-similarity relation. (3) If for every
node u ∈ VP , [u] , ∅, P is veri�ed as a d-summary. Otherwise, it
determines that P is not a d-summary.

The algorithm keeps the following invariants: (1) For any pair

(u,v) ∈ R
↑

d
∩ R

↓

d
, v ∈ [u] when it terminates. (2) If a node v is

removed from [u] at any time, then (u,v) < Rd . Hence it correctly
computes the largest Rd and GP . To see the complexity, observe
that it takes O((|VP | + |V |)(|EP | + |E |)) time to verify forward and
backward d-similarity for a single summary node in VP . Thus the
total veri�cation time is in O(|VP |(|VP | + |V |)(|EP | + |E |)).

3 DIVERSIFIED SUMMARIZATION

We next introduce a bi-criteria function that captures the quality
of summaries in terms of both informativeness and diversity.

Informative Summaries. We are interested at informative sum-
maries that capture more information. This can be measured by an
informativeness function de�ned as:

I (P) =
|P |

bP
∗ supp(P ,G)

where |P | (the size of P ) is de�ned as the total number of nodes
and edges in P , bp is a size bound to normalize |P |, which can be
speci�ed as a recognition budget (i.e., the largest summary size a
user can understand) [23], and the support supp(P ,G) is de�ned

as |GP |
|G |

, where |GP | (resp. |G |) is the size (i.e., the total number of

nodes and edges) in GP (resp. G). That is, the informativeness I (·)
favors larger summaries that also have higher support.

Example 3: Consider the 2-summaries P1-P3 of the graphG (with
45 entities and edges) in Fig. 1. Let the summary size bound bp=8,
we can verify that the size of the base graph |GP1 | is 20. Hence,
supp(P1,G)=

20
45 , and the informativeness of P1 I (P1) is

7
8 ∗

20
45=0.39.

Similarly, I (P2)=
6
8 ∗ 12

45=0.20, and I (P3)=
6
8 ∗ 11

45=0.18. ✷

Diversi�ed Summaries. A second challenge is to diversify the
summaries in terms of the entities they summarized. We introduce
a distance function for summaries.

Distance function. Given summaries P1 and P2, their distance is

quanti�ed by the distance function di� de�ned as:

di�(P1, P2) = 1 −
|VGP1

∩VGP2
|

|VGP1
∪VGP2

|

where VGP1
=

⋃

u ∈VP1

[u] (resp.VGP2
=

⋃

u ∈VP2

[u]); that is, it measures

the Jaccard distance between the set of entities summarized by
P1 and P2 in their base graphs. One can verify that di� is a met-
ric, i.e., for any three d-summaries P1, P2 and P3, di�(P1, P2) ≤

di�(P1, P3) + di�(P2, P3). Here we quantify entity set di�erence as
a more important factor of summary di�erence. Label/type di�er-
ence of the entities can also be applied to quantify weighted VGP

in the distance function di�.

Example 4: Consider the 2-summaries P1-P3 of the graph G in
Fig. 1. The di�erences are calculated as follows: di�(P1, P2)=1-
2
14=0.86, where they summarize two common entities {The_Eagles,
Def_Leppard}). Similarly, di�(P1, P3)= 1.00, and di�(P2, P3)=0.90. ✷

Reduced summaries. While the distance function captures the
di�erence of summaries in terms of their base graphs, informative
summaries may contain redundant pattern nodes and edges that
can be further reduced. This is not discussed in [21].

Example 5: Consider three summaries: P1 (Example 1), P11 , and P
2
1

as illustrated in Fig. 2. We can verify that these three summaries
have a same base graph inG (Fig. 1). Although P11 and P

2
1 are larger

than P1, they contain “redundant” nodes (e.g.,film and band in P11 ,

and artist in P21 ) that do not contribute new information, hence
should be “reduced” to a concise summary P1. ✷
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Figure 2: Reduced summary and its “non-reduced” counterparts

Given two d-summaries P1 and P2, we say P1 and P2 are equiv-
alent, denoted as P1 ∼ P2, if there exists a d-matching R12 from
P1 to P2 (denoted as P1 � P2), and its inverse relation R−112 is a d-
matching from P2 to P1 (denoted as P1 � P2). The following result
bridges summary equivalence and their support.

Lemma 3.1. For any graphG and its two d-summaries P1 and P2,

supp(P1,G)=supp(P2,G) if P1 ∼ P2.

Proof: Given two equivalent summaries P1=(VP1 ,EP1 ,LP1 ) and
P2=(VP2 ,EP2 ,LP2 ), it su�ce to show that |GP1 |=|GP2 |, where
GP1=(V1,E1,L) (resp. GP2=(V2,E2,L)) refers to the base graph of
P1 (resp. P2). Denote as the d-matching relation from P1 (resp. P2)
to G as R12 (resp. R21). (1) As P1 � P2, for every node u1 ∈ VP1 ,
there exists a node u2 ∈ VP2 such that (u1,u2) ∈ R12. As P2 is a d-
summary of G, by de�nition of d-matching, any match of u2 in G
is also a match of u1. Thus, V2 ⊆ V1. Similarly, as P2 � P1, V1 ⊆ V2.
That is,V1=V2. (2) Similarly, we can verify that E1=E2. Putting these
together, |GP1 |=|GP2 |. Thus, supp(P2,G) = supp(P1,G). ✷

A summary P is a reduced summary, if there exists no smaller
summary P ′, such that P ∼ P ′. Indeed, a reduced summary is a
smallest representation of its equivalent summaries, without los-
ing the entities it can summarize inG. Better still, the result below
veri�es that a summary P can be e�ciently “reduced”.

Lemma 3.2. Given a summary P=(VP ,EP ,LP ), it is in O((|VP | +

|EP |)
2
+ |VP |

2) time to compute a reduced summary Pr of P .

As a proof of Lemma 3.2, we provide a reduction algorithm, de-
noted as Reduce, as follows. Given a summary P , Reduce (1) com-
putes a d-matching R from P to itself, and (2) identi�es all the node
pairs (u,v) such that (u,v) ∈ R and (v,u) ∈ R. The node pairs forms
an equivalence relation R∗ ⊆ R. It then “merges” all the nodes in
the same equivalence class to a single node [u], and redirects the
edges to [u]. This yields a reduced d-summary Pr of P .

Analysis. It is easy to verify that Pr � P and P � Pr . We now prove
that Pr is the smallest pattern among its equivalent counterparts,
by contradiction. Assume there exists a smaller summary P ′r such
that P ′r ∼ P . Then P ′r ∼ Pr . Denote as the equivalence relation
between P ′r and Pr as R∗

′
. Then there exists at least two distinct

nodes u, u ′ in Pr , and a third node v in P ′r , such that (u,v) ∈ R∗
′
,

(v,u) ∈ R∗
′
, (u ′,v) ∈ R∗

′
, and (v,u ′) ∈ R∗

′
. Thus, u, u ′ and v in P

belongs to the same equivalent class. Nevertheless,u andu ′ are not
merged in Pr . Thus, either P ′r is not equivalent to P , or |Pr |=|P ′r |.
Either leads to a contradiction.

The above reduction procedure Reduce takes O(|VP | + |EP |)
2)

time to compute the equivalence relation, andO(|VP |
2) to perform

the reduction. The total cost is hence in O((|VP | + |EP |)
2
+ |VP |

2)

time. Lemma 3.2 thus follows.

Example 6: Following Example 5, Reduce �nds that the two film

nodes and two band nodes belong to two equivalent classes in P11 ,

thus reduces P11 to P1. P21 can also be reduced to P1 by merging all

artist nodes. Note that P31 is a reduced summary but not equivalent

to P1, as artist in P1 can not be matched with those in P31 . ✷

Diversi�ed Summarization. We now introduce a bi-criteria
function F that integrates informativeness I (·) and distance di�(·)
functions. Given a summarization SG for a knowledge graph G,
the function F is de�ned as:

F (SG ) = (1 − α)
∑

Pi ∈SG

I (Pi ) +
α

card(SG )−1

∑

Pi,Pj ∈SG

di�(Pi , Pj )

where (1) card(SG ) refers to the number of summaries it contains;
and (2) α (∈ [0, 1]) is a tunable parameter to trade-o� informative-
ness and diversi�cation. We scale down the second summation (di-

versi�cation) which has card(SG )(card(SG )−1)
2 terms, to balance out

the fact that the �rst summation has card(SG ) terms.

Example 7: Set bp=8 and α=0.1, a top-2 diversi�ed summarization
SG of G (Fig. 1) is {P1, P2}, with total quality score F (SG )= 0.9 ∗
(0.39 + 0.20)+0.1 ∗ 0.86 = 0.62. ✷

Based on the quality metrics, we next introduce a graph sum-
marization problem for knowledge graphs.

Problem statement. Given a knowledge graph G, integers k and d ,
and a size budget bp , the diversi�ed graph summarization problem
is to compute a set of k summaries SG of G such that

◦ each summary in SG is a reduced d-summary with size
bounded by bp ; and

◦ the quality function F (SG ) is maximized.
That is, it �nds k reduced summaries that are both informative

and diversi�ed. Although desirable, it is (not surprisingly)NP-hard.
The hardness can be shown by a reduction from the maximum
dispersion problem [8] (a known NP-complete problem).

Despite the hardness, we show that diversi�ed summarization
is feasible over large graphs, by providing a parallel approximation

algorithm in Section 4.

4 PARALLEL DIVERSIFIED SUMMARIZATION

We start with a sequential mining algorithm. Let S∗
G

denote
the optimal summarization that maximizes the function F . An ϵ-
approximation algorithm returns a summarization SG , such that

F (SG ) ≥
F (S∗

G )

ϵ (ϵ ≥ 1). We show that diversi�ed summarization
is 2-approximable, by presenting such an algorithm.

Approximated Summarization. Given a graphG, integers k and
d , and size budget bp , the algorithm, denoted as approxDis, has
the following steps. (1) It invokes a mining algorithm sumGen

(G,k,d,bp ) to discover a set CP of reducedd-summaries. (2) It then
invokes a diversi�cation algorithm sumDiv to compute the top-k
diversi�ed summaries SG from CP .

Auxiliary structure. Underlying approxDis is the maintenance of a

reduced summary lattice P=(Vr ,Er ) encodes the generation of d-
summaries, where each node Pr ∈ Vr at level i of P is a reduced
d-summary with i edges, and there exists an edge et=(Pr , P ′r ) ∈ Er ,
if Pr and P ′r are two reduced d-summaries at level i and i + 1 (j ∈
[1,bp − 1]), and P ′r is obtained by adding an edge to Pr .
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Procedure sumGen. Procedure sumGen follows conventional pat-
tern mining (e.g., level-wise) to generate summaries with P. The
di�erence is that it uses a validation procedure that guarantees
each group of equivalent summaries is veri�ed only once.

For each pattern P , it validates if P is a reduced d-summary
in two steps. (1) It �rst “reduces” P to its reduced counter-
part with procedure Reduce in polynomial time (Lemma 2.1). (2)
Given a reduced pattern P ′, it checks whether there exists a re-
duced summary Pr at level-|P ′ | such that Pr ∼ P ′. If so, it sets
supp(P ′,G)=supp(Pr ,G) without veri�cation (Lemma 3.1). Other-
wise, it invokes procedure valiSum (Lemma 2.1) to verify P ′. It
stores supp(P ′,G) and updates CP if P ′ is a valid d-summary.

Procedure sumDiv. Given a set of reduced summaries CP , proce-
dure sumDiv greedily adds a summary pair {P , P ′} from CP to SG
that maximally improves a function F ′(SG ), de�ned as F ′(P , P ′)=
(1 − α) (I (P) + I (P ′))+α ∗di�(P , P ′). That is, F ′ is rounded down
from the original function F , which guarantees an approximation
ratio. This step is repeated ⌊ k2 ⌋ times to obtain top-k d-summaries
SG . If k is odd, it selects an additional summary P that maximizes
F (SG ∪ {P}) after ⌊ k2 ⌋ rounds of selection.

Analysis. The correctness of approxDis follows from the cor-
rectness of procedure sumGen, and that procedure Reduce

and Validate correctly validates all reducedd-summary candidates.
Following [8], approxDis simulates an approximation for maxi-
mum dispersion that guarantees approximation ratio 2.

For complexity, approxDis takes O(t1(G,bp )) (the cost
of sumGen) + O(t2(G,k)) (the cost of sumDiv) time. De-
note as N the total veri�ed patterns in sumGen. (1) By
Lemma 2.1 and Lemma 3.2, the veri�cation takes O(t1(G,bp ))

= O(N ∗ bp |V | |E |) time. (2) The diversi�cation sumDiv takes

in total O(t2(G,k))=O(
k
2N

2 |V |) time. Thus, the total cost is in

O(t1(G,bp ))+O(t2(G,k))= O(N ∗ bp |V | |E | + k
2N

2 |V |) time.

The sequential algorithm is expensivewhenG is large: bothmin-
ing and diversi�cation are two intractable processes. We can do
better with parallel diversi�ed summarization algorithm.

4.1 Parallel Approximability

We consider a partition strategy P that constructs a fragmenta-
tion G ofG, by distributingG to n workers, where each worker Pi
(i ∈ [1,n])manages its local fraction (a subgraph) ofG, denoted as
Gi . To characterize the e�ectiveness of parallel summarization, we
introduce a class of parallel approximation algorithms.

We �rst review parallel scalability [5, 12]. Consider a “yard-
stick” sequential algorithm that, given graph G, integer d and
size bound bp , approximately computes the summaries, e.g., algo-
rithm approxDis. Denote the time cost of approxDis as t(|G |,bp ,k).
A parallel algorithm Ap is parallel scalable if its running time by n
processors can be expressed as

T (|G |,bp ,k,n) = O(
t(|G |,bp ,k)

n
)

Intuitively, it measures the speedup over a sequential algorithm by
parallelization. It is a relative measure w.r.t. a yardstick sequential
algorithm A. A parallel scalable Ap “linearly” reduces the sequen-
tial running time of A when n increases.

Algorithm paraDis

Input: a fragmented graph G , integer k , size bound bp ;
Output: a set of diversi�ed reduced d-summaries.

1. /* executed at coordinator /*
set CP :=∅; set SG :=∅; lattice P:=∅;
integer i :=1; �ag newP:=true;

2. P:=Spawn(0); /* initialize P with single-node patterns */;
3. while i ≤ bp and newP do /* superstep i */
4. set Σi :=Spawn(i); if Σi = ∅ then newP:=false;
5. if newP then

6. set CPi := ParsumGen(Σi );/*parallel validation*/
7. update P; CP :=CP ∪ CPi ;
8. construct work units Mi and distribute Mi to workers;
9. set SGi :=ParsumDiv(Mi ); /*parallel diversi�cation*/
10. update SG with SGi ;
11. return SG ;

Figure 3: Algorithm paraDis

Parallel approximability. Consider an optimization (e.g., maxi-
mization) problem with an optimal solution quanti�ed by a single
numerical value x . We say the problem is parallel ϵ-approximable,
if there exists a parallel scalable algorithm Ap w.r.t. a sequential
yardstick algorithmA, and returns a solution x̃ for which x̃ ≤ ϵ ∗x .

We present the main result of this section below.

Theorem 4.1. There exists a parallel 2-approximable algorithm

w.r.t. the sequential algorithm approxDis that discovers diversi�ed

top-k summaries with time cost in O(
T (G,bp,k)

n ).

As a proof, we develop a parallel algorithm, denoted as paraDis
(illustrated in Fig. 3). It follows Bulk synchronous model and runs
in supersteps, where each superstep contains two steps: (1) Paral-
lel veri�cation (denoted as ParsumGen) that “parallelizes” its se-
quential counterpart sumGen to generate and verify summaries
(as in Algorithm approxDis), and (2) Parallel diversi�cation (de-
noted as ParsumDiv) that “parallelizes” its sequential counter-
part sumDiv (as in Algorithm approxDis) to update SG .

Below we introduce the algorithm paraDis.

4.2 Parallel Diversi�ed Summarization

Overview. Given a fragmented graph G, the algorithm paraDis,
shown in Figure 3, executes at most bp supersteps. It �rst invokes
an operator Spawn(0) to initialize P with single node patterns
(line 2). At each superstep i , it performs the following.

(1) It invokes Spawn(i) to generate a set Σi of patterns of size i at
a coordinator Sc (line 4). It then invokes ParsumGen to verify the
patterns at the workers, in parallel (line 6), and updates P with
new reduced summaries if any (line 7).

(2) It then constructs work unitsM as pairs of summaries, and dis-
tributes M to all the workers following a load balancing strategy
(to be discussed, line 8). It invokes ParsumDiv to collect the top-k
diversi�ed summary pairsSGi

, computed locally at eachworker in
parallel (line 9), and update SG with the summaries that improve
the rounded function F ′(SG ) as in approxDis.

The above steps repeat until bp supersteps are executed, or no
new pattern can be generated, indicated by a �ag newP (line 3).

Below we present procedures ParsumGen and ParsumDiv.
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Parallel veri�cation. Upon receiving Σi from Spawn(i), proce-
dure ParsumGen validates Σi in parallel as follows.

(1) At Sc , for each pattern P ∈ Σi , ParsumGen identi�es a veri�ed
summary Pr in P such that P is obtained by adding an edge e to
Pr . It then constructs a work unit (Pr , e, j), which encodes a request
that “validate if P is a d-summary with the base graph of Pr and
edgematches e locally at worker Sj ”. It then distributes all thework
units to their corresponding workers to be validated in parallel,
following a workload balancing strategy.

(2) Upon receiving a set of work units, for each work unit (Pr , e, j),
eachworker Si performs incremental validation for P as the “union”
of Pr and e , which (a) issues an on-demand fetching of e(Gk ), the
local edge matches of e from other workers Sk and (b) veri�es P in
the graph Pr (G j ) ∪

⋃

k ∈[1,n]
e(Gk ) (i.e., the “union” of local matches

Pr (G j ) and all the edge candidates of e) instead of the entire G j .
Each worker stores P(G j ) for the next round of computation.

For each veri�ed P , it constructs a bit vector P .lvecj with length
|G j | that encodes thematches of P (P .lvec[v]=1 if nodev is amatch;
similarly for edges) and returns P .lvecj in a messageMj .

(3) Upon receiving all the messagesMj , Sc computes P .lvec by per-
forming “OR” over P .lvecj (i ∈ [1,n]), and obtain the support of P .
This completes a round of parallel validation.

Parallel Diversi�cation. Given the veri�ed d-summaries CP so
far (including CPi ) (line 7), ParsumDiv updates diversi�ed sum-
maries SG in parallel, as follows.

(1) At Sc , for each summary P ∈ CPi , paraDis constructs a work
unit wP . The work unit wP consists of (a) P and the vector P .lvec,
and (b) a set of summaries DP ⊆ CPi , as well as their bit vectors,
which encodes a request that “computes the distances between P

and the summaries inDP ”. Given the work unitsM=
⋃
P ∈CPi

wP , it
distributes M to all the workers, following a work load balancing
strategy (to be discussed, line 8).

(2) Upon receiving a set of work unitsMj , for each work unitwP ∈

Mj , a worker Sj computes the distances di�(P , P ′) (P ′ ∈ DP ) by
bit vector operations on P .lvec and P ′.lvec. It locally executes a
top-k query to �nd out the local top-k diversi�ed pairs SG j

that
maximize the diversi�cation function F ′, and returns SG j

to Sc .

(3) The coordinator Sc collects local top-k pairs from all the work-
ers, and updates SGi

as
⋃
j ∈[1,n]{SG j

} (line 10). It then updates
SG with the new summary pairs in SGi

.

Load balancing. We partition G with linear deterministic greedy
(LDG) scheme [22], which assign a vertex to the partition where it
has the most edges. This reduces skewed distribution due to high-
degree edges. Algorithm paraDis further uses strategies below.

(1) For each work unit (Pr , e, j) ( ParsumGen), e(G) is evenly dis-
tributed to all workers. paraDis estimates a “runtime skewness” of

Pr (G) at Sj as |1−
n∗ |Pr (G j ) |

|Pr (G) |
|. If the skewness is above a threshold,

it evenly redistributes Pr (G) to all workers.

(2) For each work unit wP with a set of summaries DP , paraDis
estimates an upper bound of the diversi�cation cost as |DP | |V |2,

and assigns the cost to wP . It then adopts a greedy strategy fol-
lowing the generalized assignment problem [20] which iteratively
assigns a work unit with the smallest cost to a worker with the
(dynamically updated) least load. By developing an approxima-
tion preserving reduction, we can verify that this algorithm is a
2-approximation [20], and takesO(|Wj |n logn) time (|Wj | ≤ |CPi |)
for at most |CPi | validated summaries at superstep i .

Performance Analysis. To see that paraDis is parallel scalable,
it su�ces to show that parallel veri�cation and diversi�cation are
parallel scalable w.r.t. their sequential counterparts in approxDis.

Parallel scalability. Recall that approxDis incurs two parts of cost

O(t1(G,bp ))=O(N ∗ bp |V | |E |), and O(t2(G,k))=O(
k2

2 N 2 |V |). In ac-
cordance, paraDis incurs the cost below.

(1) At superstep i , each worker Sj (a) receives e(Gk ) (k , j) in

O(
|E |
n ) time, due to the balanced edge partition of G, (b) sends

e(G j ) to other n-1 workers in O(
n−1 |E |

n ) time, which is bounded

by O(
|V | |E |
n ) time as n ≪ |V |, (c) performs local veri�cation in

parallel, inO(
|Σi |∗bp |V | |E |

n ) time, and (d) returns the local matches

in parallel in O( |V | |Σi |
n ) time. As there are bp supersteps, the total

cost is in O(
N ∗bp |V | |E |

n )=O(
t1(G,bp )

n ).

(2) At superstep i , ParsumDiv takes in total O(k
2

2 |Mj | |DP |
2 |V |)

time to computes top-k summary pairs, bounded by

O(
k2

2 |CPi |
2 |V |

n ), as all the summaries are from CPi . The par-

allel cost of sending top summaries to Sc is in O(
bp∗k

n ). The total

parallel diversi�cation cost is thus in O(
k2

2 N 2 |V |

n )=O( t2(G,k)n ).
Putting these together, algorithm paraDis takes in total

O(
t1(G,bp )

n ) + O(
t2(G,k)

n ) time, hence is parallel scalable w.r.t. its
sequential counterpart approxDis.

Approximation. The quality guarantee of paraDis follows from the

invariant that at any superstep i , the set SG is a 2-approximation
of the optimal diversi�ed summaries from the validated ones. In-
deed, it su�ces to identify the top-k summaries from ParsumDiv.
Thus, paraDis generates SG with approximation ratio 2 when ter-
minates, and is a parallel 2-approximation algorithm.

The above analysis completes the proof of Theorem 4.1.

Remark. paraDis can be readily extended to parallelize “anytime”
summarization (streamDis) [21]. To this end, it only needs to main-
tain a cache at the coordinator to store (a) a set of summaries, and
(b) for each summary, top-k most di�erent summaries (that maxi-
mize function di�(·)). It performs parallel veri�cation and diversi�-
cation tomaintain the cached summaries at coordinator, in parallel,
and returns the summarization whenever requested.

5 EXPERIMENTAL EVALUATION

Using real-life and synthetic data, we evaluated the e�ciency of
sequential algorithm approxDis, the scalability of parallel algo-
rithm paraDis and the e�ectiveness of the summaries.

Experimental Setting. We used the following setting.
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Figure 4: Sequential summarization: Performance

Datasets. We use three real-life graphs: (1) DBpedia1 contains
4.86M nodes and 15M edges and 676 labels (e.g.,’Settlement’, ’Per-
son’, ’Building’); (2) YAGO2, a sparser graph compared to DBpe-

dia with 1.54M nodes and 2.37M edges, but with more diversi�ed
(324343) labels; and (3) Freebase (version 14-04-14)3, with 40.32M
nodes, 63.2M edges, and 9630 labels.

We also use BSBM4 e-commerce benchmark to generate syn-
thetic knowledge graphs over products with di�erent types, re-
lated vendors, consumers, and views. The generator is controlled
by the number of nodes (up to 60M), edges (up to 152M), and labels
drawn from an alphabet of 3080 labels.

Algorithms.We implemented the algorithms below, all in Java:

(1) Sequential algorithm approxDis, compared with (a) GRAMI [3]
that discovers frequent subgraphs as summaries, where the base
graph of a summary is induced by all its isomorphic counter-
parts inG; (b) stream-style algorithms heuDis and streamDis [21]
extended to reduced summaries, where streamDis applies proce-
dure sumDiv to cached (at most lp ) summaries of a stream of veri-
�ed ones, and heuDis follows streamDis, but simply swaps a sum-
mary with a new one that maximize function F ;

(2) Parallel algorithm paraDis (including procedures ParsumGen

and ParsumDiv), compared with paraDisn, its counterpart without
load balancing strategy; and

(3) A query evaluation algorithm extended from [21], which ac-
cesses reduced d-summaries instead of d-summaries. It selects and
refers to a small set of reduced summaries that best “cover” the
query, and fetches entities from the graph only when necessary.

As reduced summaries are a special case of d-summaries, all the
techniques and complexity results remain intact. We remark that
one can readily plug-in any standard query evaluation algorithms
for subgraph queries to the query evaluation framework.

We ran all our experiments on a Linux machine powered by
an Intel 2.4 GHz CPU with 128 GB of memory. For the tests of
parallel summarization, we used Amazon EC2 r4.large instances,
each powered by an Intel 2.8GHz CPU and 16G of memory. We
ran each experiment 5 times and report the averaged results.

We next report the details of our �ndings.

Exp-1: Sequential summarization. We �xed parameter α=0.5
in function F for diversi�cation, k=64, summary size bound bp=6,
and d = 1. We set a support threshold θ=0.005. For GRAMI,

1http://dbpedia.org
2http://www.mpi-inf.mpg.de/yago
3http://freebase-easy.cs.uni-freiburg.de/dump/
4http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

 0

 100

 200

 300

 400

 500

 600

4 8 12 16 20

T
im

e(
se

co
n

d
s)

paraDis
paraDisn

(a) paraDis: Varying n (YAGO)

0.5k

1k

1.5k

2k

4 8 12 16 20

T
im

e(
se

co
n

d
s)

paraDis
paraDisn

(b) paraDis: Varying n (DBpedia)

5k

10k

15k

20k

25k

4 8 12 16 20

T
im

e(
se

co
n

d
s)

paraDis
paraDisn

(c) paraDis: Varying n (Freebase)

2k

4k

6k

8k

10k

12k

32M 72M 107M 142M 176M 212M

T
im

e(
se

co
n

d
s)

paraDis
paraDisn

(d) paraDis: Varying |G | with 20 workers

Figure 5: Scalability of paraDis

we carefully tuned its support threshold to allow the generation
of patterns with similar label set and size ofapproxDis. We ex-
cluded “overly general” (top 2% frequent) labels such as “Thing”.
For streamDis and heuDis, we report their convergence time [21].
As shown in Fig.4(a), streamDis and approxDis are both orders of
magnitude faster than GRAMI. The latter does not run to comple-
tion within 10 hours over both DBpedia and Freebase.

Fig. 4(b) veri�es that with reduced summaries, streamDis pre-
serves the ability to converge to near-optimal summaries. The ad-
ditional cost of summary reduction is not signi�cant.

Exp-2: Parallel summarization. We evaluate the parallel algo-
rithm paraDis, comparedwith paraDisn.We �xed parameterα=0.5
for diversi�cation, k=64, the summary size bound bp=6, number of
hops d = 1, and varied the number of workers n from 4 to 20.

We report the performance of paraDis over the real-world
datasets in Fig. 5(a)- Fig. 5(c), respectively. (1) paraDis scales well
with largern. The performance of paraDis is improved by 2.6 times
from when n is increased from 1 to 4 and 3.3 times for n from 4 to
20. (2) The load balancing strategy improves the performance of
paraDisn by 4.4 times on average. (3) It is feasible to summarize
large graphs. For example, paraDis takes 200 seconds for paraDis
to summarizeDBpedia, when n=20, improving its sequential coun-
terpart approxDis by 13 times. (4) In all cases, the accuracy of
paraDis (not shown) is almost the same as its sequential counter-
part approxDis, due to its parallel approximability.

Using the same setting, we evaluated paraDis with a set of syn-
thetic graphs. The scalability result varying n is consistent with
its counterparts over real-world graphs(not shown): paraDis is 3
times faster whenn is increased from 4 to 20 for |G | = (60M, 152M)

(60million nodes, 152million edges). Furthermore, Fig. 5(d) veri�es
that paraDis scales well with graph size (n=20): it takes 371 seconds
for |G |=(10M, 22M) and 2.5k seconds for |G | = (60M, 152M).

Exp-3: Case study. We performed two case studies to evaluate
the practical application of the knowledge summaries.

Coverage of summaries. We investigate the practical number of

diversi�ed summaries needed to “cover” the entity types. We
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sampled 50 ambiguous keywords from DBpedia (e.g., “waterloo”,
“Avatar”), each has on average 4 di�erent types. We found that
more diversi�ed summarization (e.g., α = 0.9) needs less sum-
maries (e.g.,k = 9) to cover all the entity types. For all cases, it takes
at most 15 summaries to cover all the types. In contrast, most of
the summaries from GRAMI are redundant small patterns. It can-
not cover the entity types even with 64 summaries.

Three real-life 2-summaries ofDBpedia for keyword “waterloo”
are shown in Fig. 6. These summaries suggest intermediate key-
words as enhanced queries (e.g.,Military Person); and can also sug-
gest diversi�ed facts for e.g., Précis queries [23].

Cross-domain queries. We also evaluate how the summaries can be

used to support “cross-domain” querying over multiple knowledge
bases [2]. We generated 20 cross-domain queries over YAGO and
DBpedia. We evaluate the queries by accessing the summaries of
YAGO and DBpedia, respectively, and “merges” the matches from
each if they have the same URI, to form a complete answer.

We show a query and its answer in Fig. 7. The query �nds Award
wining IT_Companieswith speci�ed products and their parent com-
panies(IC). While YAGO reports parent companies, and DBpedia

provides products, a complete answer(Amazon.com) can be found
by accessing summaries P7 and P8 from YAGO and DBpedia, re-
spectively, integrating the partial answers. This suggests the appli-
cation of summaries in supporting multi-source querying.

6 CONCLUSIONS

We studied reduced d-summaries and developed sequential and
parallel summarization algorithms for large knowledge graphs.
Our experimental results veri�ed that our algorithms are feasible,
and can signi�cantly reduce the cost of knowledge graph query
evaluation. One future work is to enable query suggestion with
summaries and use graph summarization for parallel approximate

query evaluation [7]. Another topic is to develop summary-based
algorithms for more types of analytical queries.
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