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Introduction
Motivation

ÅQueryingheterogeneous and large-
scale knowledge graphs are expensive

ÅGraph patterns can benefit knowledge 
search by suggesting ñviewsò

Contribution

ÅUse summarization to facilitate 
query evaluation

Benefits

ÅQuery evaluation: Summaries reduce 
query evaluation time and space

ÅQuery suggestion: Summaries are 
generated as a feedback to users and 
help them write more accurate queries 

ÅResult understanding: Help end-
users to better capture the information 
from the answers

Evaluation
Datasets

Results

ÅPerformance of sequential summarization

ÅPerformance of parallel summarization

ÅCase study:

Yago DBPedia Freebase

# Nodes 1.54M 4.86M 40.32M

# Edges 2.37M 15M 63.2M

# Labels 0.32M 676 9630

Quality of streamDisgiven 

Different cache size (YAGO)

Summarization on Real life datasets

GraMi can not handle large datasets
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Execution time varying #of workers (YAGO)
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How to construct summaries

How to leverage the summaries

Diversified Summarization
ÅGenerate diversified frequent 

summaries. Details shown in [1].

ÅEquivalent summaries(P1~P2): exist 
a d-matching R12 from P1 to P2 and its 
inverse d-matching R12

-1 from P2 to P1

ÅReduced summaries: there exists no 
smaller summaries Pô such that P~Pô

Sequential Algorithms
ÅapproxDis: generate top-k diversified 

patterns (2-approximation guarantee)

ÅPattern verification: Pattern
generation via edge expansion and 
validation via d-simulation

ÅPattern diversification: Diversify 
frequent patterns via pair-wise score 
and output top-k ones

ÅstreamDis: maintain a pattern cache 
and perform. Anytime algorithm and 
still preserve 2-approximation 

Parallel Algorithm (paraDis)
ÅParallel scalability: denote the time 

cost of approxDisas t(|G|,bp,k). 
paraDis is parallel scalable as its 
running time by n processors is:

ÅparaDis: following BSP model, in 
each super step perform verification 
and diversification in parallel

ÅArchitecture:

ÅParallel verification: 

Generate and distribute patterns(Sc)

Pattern validation in parallel (Sj)

Gather validated frequent patterns 

and their matches from workers (Sc)

ÅParallel diversification:

Distribute summary pairs (Sc)

Pairwise distance calculation and 

local top-k pairs generation (Sj)

Collect local top-k pairs and update 

global top-k summaries (Sc)

ÅLoad balancing: iteratively assign 
work units with the smallest cost to the 
workers with the least load

ÅstreamDisparallelization: Sc caches a 
set of summaries and their top-k most 
different summaries. Top-k summaries 
can be returned whenever requested. 


