

WASHINGTON STATE **J**INIVERSITY

Parallel Graph Summarization for Knowledge Search

Qi Song, Mohammad Hossein Namaki, Peng Lin and Yinghui Wu qsong, mnamaki, plin1, yinghui} @eecs.wsu.edu School of Electronic Engineering and Computer Science, Washington State University

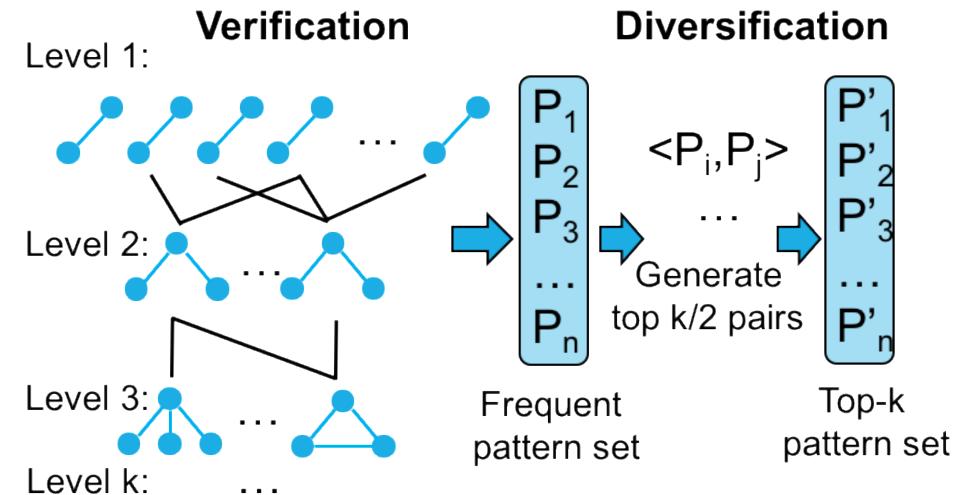
Introduction

Motivation

- Querying heterogeneous and largescale knowledge graphs are **expensive**
- Graph patterns can benefit knowledge search by suggesting "views"
- Knowledge Graph Graph Query genre genre film HOLIDAYS COUNTRY ?artist

Sequential Algorithms

approxDis: generate top-k diversified patterns (2-approximation guarantee)



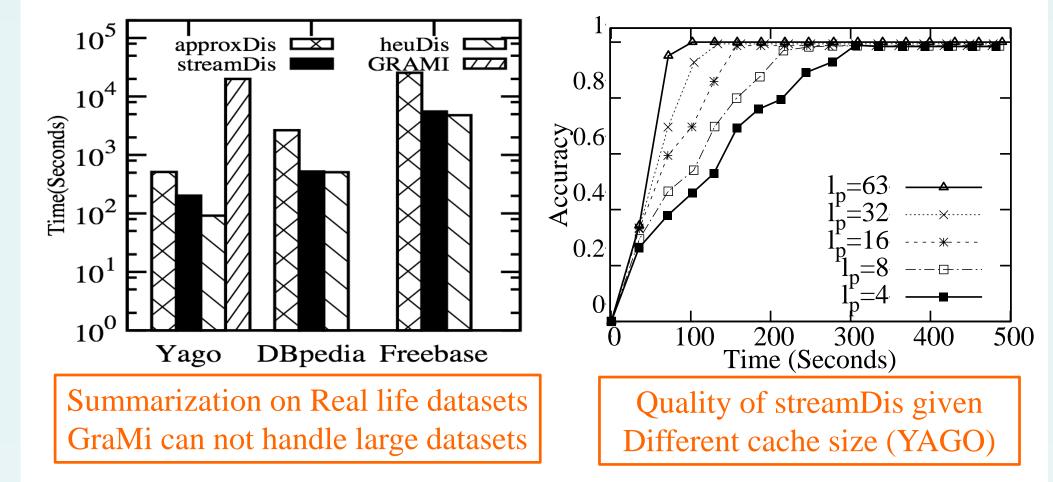
Evaluation

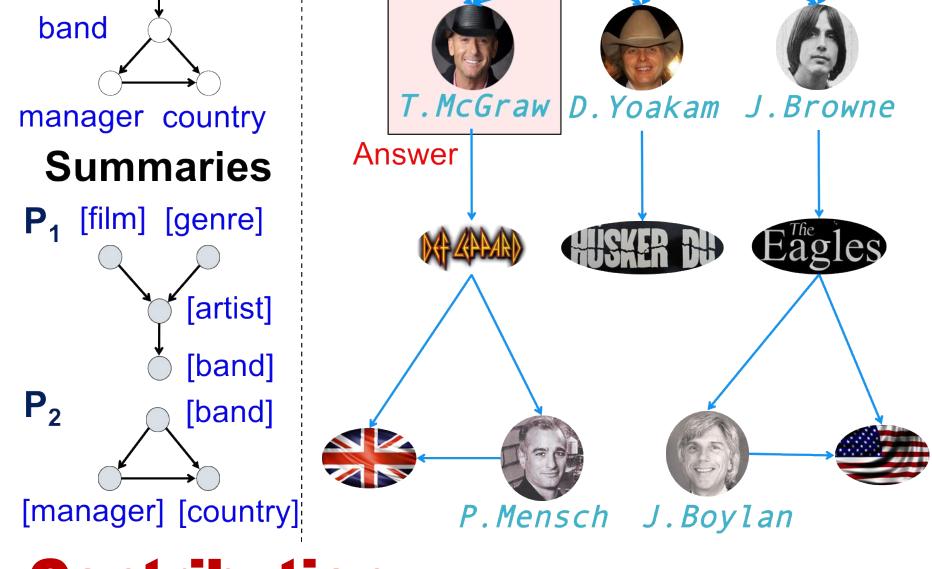
Datasets

	Yago	DBPedia	Freebase
# Nodes	1.54M	4.86M	40.32M
# Edges	2.37M	15M	63.2M
# Labels	0.32M	676	9630

Results

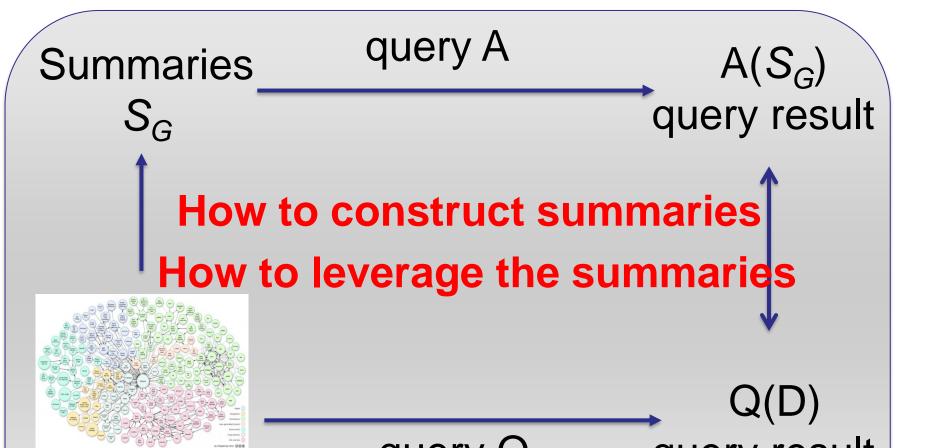
Performance of sequential summarization





Contribution

Use summarization to facilitate query evaluation



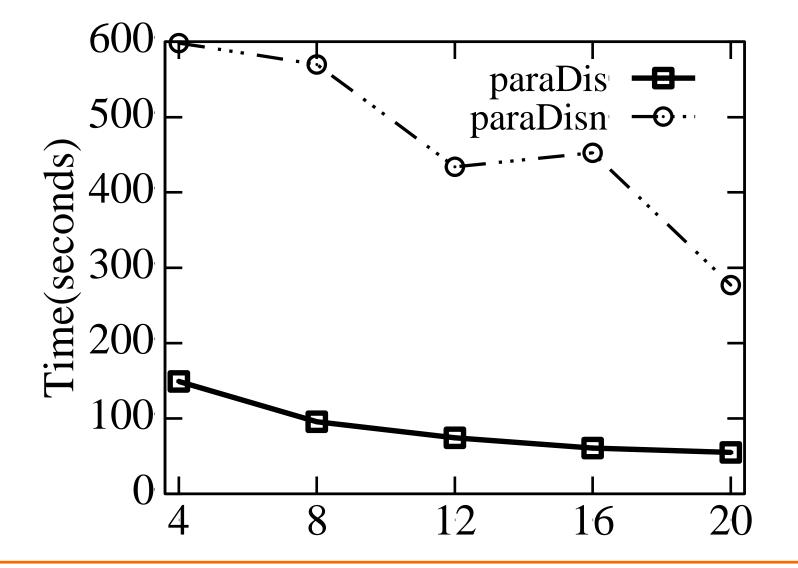
- **Pattern verification:** Pattern generation via edge expansion and validation via d-simulation
- Pattern diversification: Diversify frequent patterns via pair-wise score and output top-k ones
- streamDis: maintain a pattern cache and perform. Anytime algorithm and still preserve 2-approximation

Parallel Algorithm (paraDis)

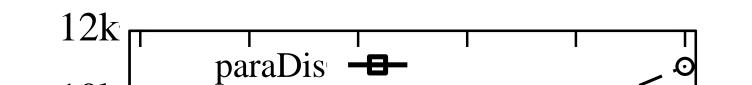
Parallel scalability: denote the time cost of *approxDis* as $t(/G/, b_p, k)$. paraDis is parallel scalable as its running time by *n* processors is:

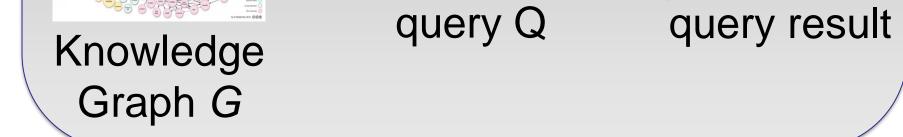
$$T(|G|, b_p, k, n) = O(\frac{t(|G|, b_p, k)}{n})$$

Performance of parallel summarization



Execution time varying #of workers (YAGO)





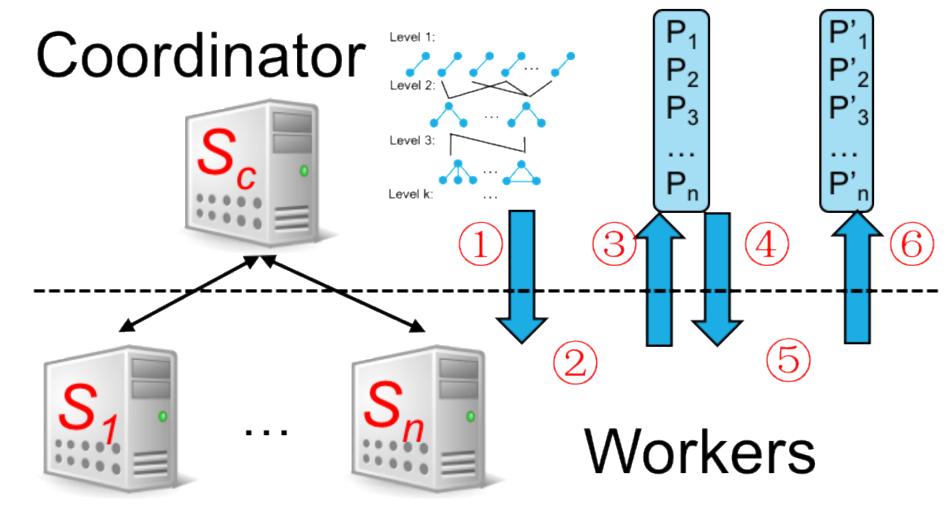
Benefits

- **Query evaluation:** Summaries reduce query evaluation time and space
- Query suggestion: Summaries are generated as a feedback to users and help them write more accurate queries
- Result understanding: Help endusers to better capture the information from the answers

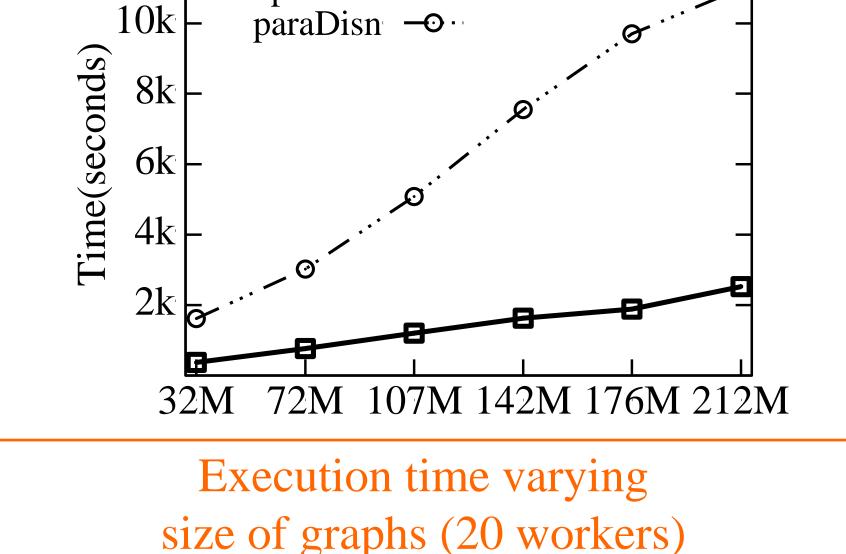
Diversified Summarization

- Generate diversified frequent summaries. Details shown in [1].
- **Equivalent summaries**($P_1 \sim P_2$): exist a d-matching R_{12} from P_1 to P_2 and its inverse d-matching R_{12}^{-1} from P_2 to P_1

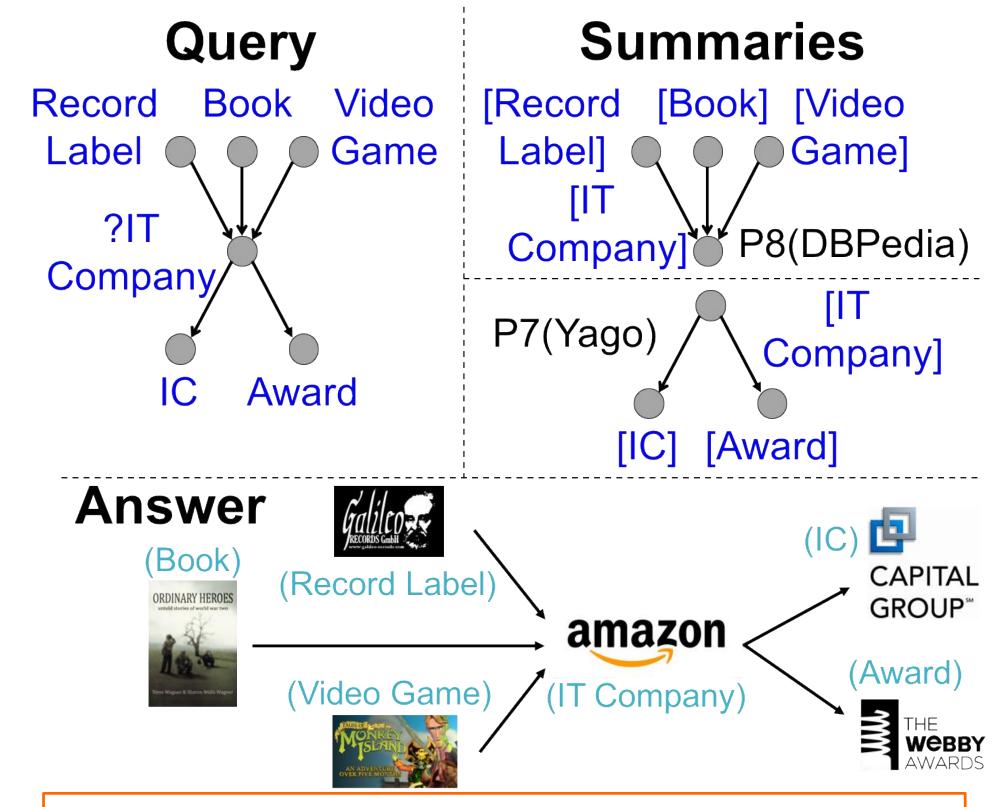
- paraDis: following BSP model, in each super step perform verification and diversification in parallel
- **Architecture:**



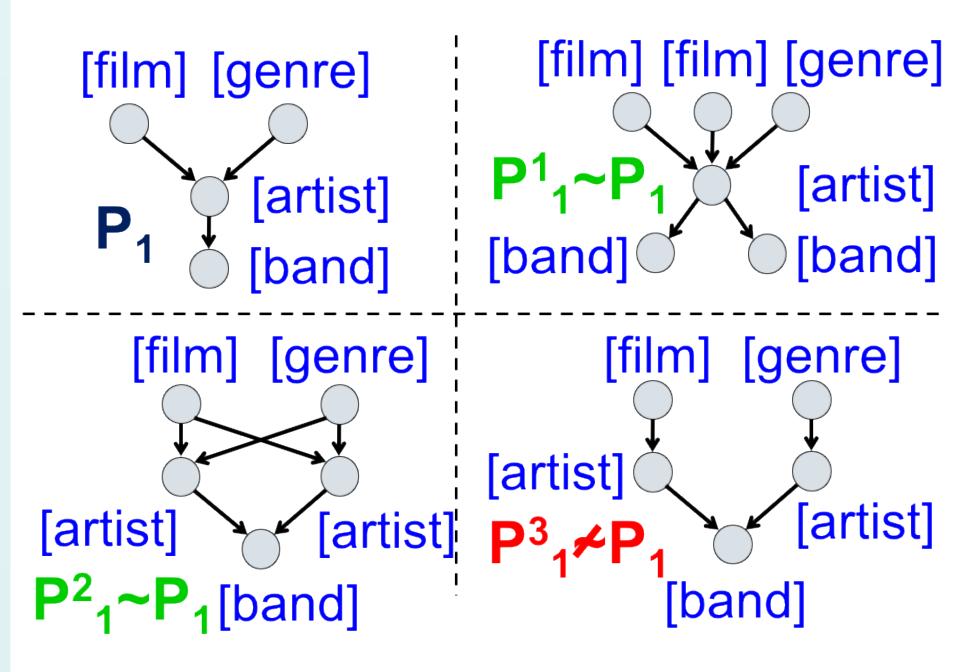
- **Parallel verification:**
 - Generate and distribute patterns(S_c) (2) Pattern validation in parallel (S_i) (3) Gather validated frequent patterns and their matches from workers (S_c)
- **Parallel diversification:** \bullet



Case study:



Reduced summaries: there exists no smaller summaries P' such that P~P'



(4) Distribute summary pairs (S_c) (5) Pairwise distance calculation and local top-k pairs generation (S_i) 6 Collect local top-k pairs and update global top-k summaries (S_c)

- Load balancing: iteratively assign work units with the smallest cost to the workers with the least load
- streamDis parallelization: S_c caches a set of summaries and their top-k most different summaries. Top-k summaries can be returned whenever requested.

Cross-domain queries over DBPedia and Yago

Reference and Acknowledgment

- [1]Qi Song, Yinghui Wu, and Xin Luna Dong. 2016. Mining Summaries for Knowledge Graph Search. In ICDM.
- This project is supported by NSF IIS-1633629