
Answering Why-questions by Exemplars in
A�ributed Graphs

Mohammad Hossein Namaki∗ Qi Song∗ Yinghui Wu∗ Shengqi Yang†

Washington State University∗ WeWork Technology†

{m.namaki, qi.song, yinghui.wu}@wsu.edu∗ shengqi.yang@wework.com†

ABSTRACT

This paper studies the problem of answering Why-questions
for graph pattern queries. Given a query Q , its answers
Q(G) in a graph G, and an exemplar E that describes de-
sired answers, it aims to compute a query rewrite Q ′, such
that Q ′(G) incorporates relevant entities and excludes irrel-
evant ones w.r.t. E under a closeness measure. (1) We char-
acterize the problem by Q-Chase. It rewrites Q by applying
a sequence of applicable operators guided by E, and back-
tracks to derive optimal query rewrite. (2) We develop fea-
sible Q-Chase-based algorithms, from anytime solutions to
fixed-parameter approximations to compute query rewrites.
These algorithms implement Q-Chase by detecting picky
operators at run time, which discriminately enforce E to re-
tain answers that are closer to exemplars, and effectively
prune both operators and irrelevant matches, by consulting
a cache of star patterns (called star views). Using real-world
graphs, we experimentally verify the efficiency and effec-
tiveness of Q-Chase techniques and their applications.

ACM Reference Format:

Mohammad Hossein Namaki, Qi Song, Yinghui Wu, Shengqi Yang. 2019.

Answering Why-questions by Exemplars in Attributed Graphs. In 2019 In-

ternational Conference on Management of Data (SIGMOD ’19), June 30-

July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3299869.3319890

1 INTRODUCTION

Graph pattern queries have been used to search for entities
in e.g., social networks and knowledge bases [8, 15], Web
exploration, and characterization of data dependencies [7].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for compo-

nents of this work owned by others than ACM must be honored. Abstract-

ing with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3319890

Figure 1: Product Search using Exemplars.

A pattern query Q can be modeled as a graph pattern with
a designated focus entity uo to specify its instances of in-
terests [6, 24, 38]. Given a graph G, it aims to compute the
answers Q(G) as the set of entities in G that match uo with
desirable values and topologies. To identify desired answers,
existing query-response paradigms [5, 15] require explicitly
specified topological and search predicates.

A useful but missing feature in conventional query-
response paradigm is the ability to clarify the unexpected
or missing entities identified by graph pattern queries. Two
common questions users naturally ask are:

• Why some unexpected entities are included in Q(G)?

• Why-Not: Why some relevant entities are missing?

While writing queries are hard, it is often easier for users
to characterize answers by providing “example” entities. It
is desirable to suggest query rewrites that can identify an-
swers closer to the desirable entities characterized by the
examples. Consider the following real-world example.

Example 1.1. Fig. 1 illustrates a real-world search sce-
nario from an e-commerce stakeholder. A user issues a
graph pattern query Q to find “Samsung” cellphones with
carriers and a sensor within its two hops in a product knowl-
edge graph G (partly shown in Fig. 2). The system returns
three CellPhones that match the focus Cellphone in the pat-
tern query Q , including S9+ (P1), Note8 (P2) and S8+ (P5).

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1481

https://doi.org/10.1145/3299869.3319890
https://doi.org/10.1145/3299869.3319890

Figure 2: A product knowledge graph.

The user was not fully satisfied with the answer, and
provided examples that describe two types of desired cell-
phones as pattern tuples: (1) t2 with 6.3′ display and costs
less than $800 (x3 < $800), or (2) t1 with 6.2′ display and
larger storage than at least a match for t2. Such constraints
can be conveniently expressed by a SQL statement (Fig. 1),
or directly specified as relevant entities from G.

The system should discover twomissingmatches S9+ (P3)
and Note8 (P4) that match the exemplar. Moreover, as nei-
ther S9+ (P1) nor Note8 (P2) satisfies the constraints posed
by the exemplar, none should be included in the answer.
Moreover, lineage information should be provided to clarify
how Q should be altered to obtain these desirable answers.

Why-provenance [4, 31] describes the origins of answers
and operators by which it arrived in a relational database.
A common approach is to use query rewriting over mate-
rialized views induced by a designated component (e.g., a
set of missing or unexpected tuples). The answer of a Why-
question is a query rewrite that returns the component. Can
we extend query rewriting to answer Why-questions charac-
terized by user-specified exemplars for graph exploration?

Example 1.2. Tracing the difference between Q ′ and Q

(Fig. 1), it also clarifies: (1) P3 was not in Q(G) since it has
no wearable sensors; (2) the price constraints should be re-
laxed to find cheaper cellphones {P3, P4}; and (3) carriers
that provided 25% discount do not sell cellphones {P1, P2}.
Note that simply adding the constraints in E to Q does not
ensure desired answers.

The above example illustrates the need of effective query
rewriting w.r.t. specified exemplars. We study a new prob-
lem called answering Why-questions by Exemplars (WQE):

• Input: graphG, pattern queryQ , answerQ(G), and an
“exemplar” E with examples and optional constraints;

• Output: a query rewriteQ ′ such thatQ ′(G) is closest
to E, under a closeness measure.

Understanding the result of graph pattern queries and ef-
ficient query processing are equally important. Solutions for

Exemplars

Q, Q(G)

feedback

validation
Q', Q'(G)

Query & Answer
Suggested Query

& Answer

ℰ=(�,�)

Figure 3: Exploratory graph search with Why-questions

WQE naturally integrate the two processes into a single it-
erative process (illustrated in Fig. 3). The workflow, in turn,
enables exploratory graph search guided by examples.

The problem is nevertheless nontrivial: evaluatingQ is al-
ready intractable (e.g., NP-hard for subgraph isomorphism).
This calls for practical cost models and practical algorithms
for Why-questions by exemplars.

Contributions. This paper introduces the first framework
for answering Why-questions by exemplars for graph pat-
tern queries. We shall refer to graph pattern query simply
as “query” in the rest of the paper.

(1) We formalize answering Why-questions by exemplars
(WQE) (Section 3). Given a queryQ , graphG, answersQ(G),
and exemplars E specified by a set of pattern tuples T and
optional constraints C, it is to compute a query rewrite Q ′

such that the answersQ ′(G) is as close as to the exemplars E
and satisfy C (if any), under a closeness measure. The prob-
lem is NP-hard, and is hard to approximate (not in APX).

(2) Despite the hardness, we show that answering Why-
questions is within reach in practice for large G.

(a) We formalize WQE with Q-Chase, a Chase process [1]
defined on pattern queriesw.r.t. E and C. Queries are chased
by constraints enforced on its answers, in accordance with
atomic updates that in turn ensure the satisfiability.

(b) We develop feasible Q-Chase-based algorithms to com-
pute optimal query rewrites (Section 5). These algorithms
efficiently Q-Chase with anytime process, and guarantees
bounded delay to compute picky operators that improve the
closeness and updateQ , with cost determined by the size of
Q and the neighbors of desired nodes up to a bounded hop.

We develop optimization strategies to further reduce the
cost of Q-Chase. Our strategies generate and exploit a class
of star views at run time. These star patterns reduce query
processing cost, and suggest useful query fragments that are
responsible for missing entities. In addition, we provide a
faster heuristic with tunable memory cost.

(3) We provide practical variants of WQE, including Why-
Many and Why-Empty, which seek for query rewrites that
can reduce irrelevant matches, and guarantees relevant
matches for E, respectively. We show these variants are ei-
ther fixed-parameter approximable or solvable in PTIME.

(4) Using real-world graphs and benchmark queries, we
experimentally verify the effectiveness and efficiency of
our algorithms (Section 7). Our Q-Chase-based algorithms
are feasible. For example, they converge to near-optimal

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1482

rewrites in 4 seconds over DBpediawith 19.7M entities and
edges. The optimization techniques improve Q-Chase by
3.41 times. Our user study also verifies that they suggest
useful explanations for real-world knowledge search.

Related work. We categorize the related work as follows.

Why-Questions. Why-provenance has been studied for re-
lational data [4, 19] to identify component of queries and
data that are responsible for unexpected results. Beyond re-
lational data, special cases have been studied for querying
labeled graphs with subgraph isomorphism [11, 21, 28, 33].
An answer is typically a subgraph that is isomorphic to the
query graph. A common approach is to modify query topol-
ogy to obtain desired ones. For example, [11] applies edge
insertion/deletions only to include the missing subgraphs.
Queries are refined to cover the original answer with di-
versified counterparts [21]. Maximal common subgraphs be-
tween queries and graphs are heuristically computed based
on their impact to results [32, 33], to explain “too many” or
“too few” answers in graph databases.

Our work differs from these work as follows. (1) We con-
sider both why [4, 12] and why-not [31, 34] questions in
a unified workflow rather than separate processes [28]. (2)
We consider queries with search predicates and edge to path
matching for flexible entity searching, beyond subgraph iso-
morphism. (3) We explore query rewriting with both relax-
ation and refinement operators. (4) Our methods only re-
quire a set of examples from users, instead of requiring ex-
plicitly defined unexpected or desired ones [28]. (5) We de-
velop feasible algorithms with provable optimality guaran-
tees and time cost. These are not addressed in prior work.

Query by example. Query-by-Example (QBE) aims to allow
users to express their search intention with examples, thus
reduces the manual effort of query construction. QBE has
been recently extended to search graphs [14, 23]. The focus
is to find answers similar to user-specified examples, rather
than query reformulation for Why-provenance. For exam-
ple, GQBE [14] computes top-k triples with highest similar-
ity scores to user-defined triples, by deriving intermediate
subgraphs that can heuristically connect the involved enti-
ties. Exemplar queries [23] follows a similar paradigm with
subgraphs as examples. Both enforce matches with relation-
ships that are same as their counterparts from the examples.

The Why-questions studied in this work are more in-
volved. (1) We allow users to pose exemplars characterized
by tuple patterns as a general representation system. (2)
Our algorithms identify both query rewrites and their an-
swers close to exemplars, with provable optimality guaran-
tees. Query rewrites are not discussed by [14, 23].

Graph exploratory search. There has been emerging need
in enabling exploratory search with approximate pattern

matching [13, 25, 26, 29, 35]. Approximate matching re-
laxes query constraints to find more answers in labeled
graphs [26, 29]. The goal is to rectify potential mis-
takes in query formulation under strict subgraph isomor-
phism. These methods do not incorporate exemplars as
instance level constraints, and typically apply relaxation
only. [13, 25] aim to minimize system response time be-
tween search sessions caused by both query suggestion and
query processing [25]. Instead of automatically compute
query rewrite, these methods let the users formulate the
query manually by suggesting edges [13]. We present feasi-
ble algorithms that adapt queries with both refinement and
relaxation operators for search predicates and edge-to-path
matching, and ensure the quality of query rewrites mea-
sured by closeness to exemplars. These indicate the applica-
tion of our methods in interactive search and user-friendly
access to complex attributed graphs. We are not aware of
prior work that addresses these challenges.

2 WHY-QUESTIONS: A SPECIFICATION

2.1 Graph Pattern Queries Revisited

Graphs. We consider a directed, attributed graph G =
(V ,E,L, fA), where V is a set of nodes, and E ⊆ V × V is
a set of edges. Each node v ∈ V (resp. edge e ∈ E) has
a label L(v) (resp. L(e)). For each node v ∈ V , a function
fA assigns a tuple fA(v) to v . The tuple fA(v) is a sequence
of attribute-value pairs {(v .A1,a1), . . . (v .An ,an)}. Each pair
(v .Ai ,ai) (i ∈ [1,n]) states that the node attributev .Ai , from
a finite attribute set A, has a constant value ai .
We denote the diameter ofG as D(G). The active domain

adom(A,G) refers to the finite set of values of A from G.

Graph pattern queries. A graph pattern queryQ is a graph
(VQ ,EQ ,LQ , FQ ,uo).VQ (resp. EQ ⊆ VQ×VQ) is a set of query
nodes (resp. query edges). Specifically, there is a designated
focusuo ∈ VQ to specify an entity of interests to be identified
by Q . Each node u ∈ VQ is associated with (1) a label LQ (u)
(which can be ’⊥’), and (2) a predicate FQ (u), which is a set
of literals. Each literal l ∈ FQ (u) is a constant literal u .A op

c , where op is a comparison operator from the set {>, ≥,=
, ≤, <}, and c is a constant. Each edge e ∈ EQ has an edge
bound LQ (e), all bounded by an integer bm (LQ (e) ≤ bm).

Pattern matching. For each node u in a queryQ , a node v in

G is a candidate of u if (1) L(v) = LQ (u) (L(v) matches ’⊥’
by default), and (2) for each l= (u .A op c) ∈ FQ (u), (v .A,a) ∈
FA(v) and a op c . We denote the candidates of u in G as Vu .

We extend P-homomorphism [5] to enable approximate
edge to path mapping. A valuation of Q in G is an injective
function h ⊆ VQ ×V , such that

• for each node u ∈ VQ , h(u) ∈ Vu (candidates), and
• for each edge e = (u,u ′) inQ , dist(h(u),h(u ′)) ≤ LQ (e).

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1483

Here, dist(h(u),h(u ′)) is the distance (the length of the short-
est path) from h(u) to h(u ′) inG. Note that subgraph isomor-
phism is a special case of the valuation h when bm=1 [5].
The matches of a node u ∈ VQ , denoted as Q(u,G), refers

to all its matches via some valuation h(u) from Q to G. We
define the answer of Q inG, simply denoted as Q(G), as the
matches of the focus uo of Q in G.

Example 2.1. Fig 2 illustrates a fraction of an attributed
knowledge graphG about products of an online store. Each
entity carries a type e.g., Cellphone, and a list of attributes
(e.g., Display) with corresponding values (e.g., “6.2”). A pat-
tern query Q has focus uo = Cellphone, with a pattern edge
e=(Cellphone, Sensor) carrying edge bound 2. This allows e to
be matched by any path between a cellphone and a sensor
with length 2 or shorter inG. One can verify that the answer
Q(Cellphone,G) of Q in G is {P1, P2, P5}.

Remarks. We clarify the following. (1) We consider queries
that support edge-to-path mapping beyond subgraph iso-
morphism, which can identify more relevant matches in
graphs with e.g., missing edges [29, 37]. For example, the
query Q in Fig. 1 allows identifying desirable cellphones
having sensors within 2 hops. (2) Queries with focus nodes
(e.g., SPARQL with variables) are commonly used to iden-
tify entities in e.g., social networks [6, 24] and knowledge
graphs [38]. We focus on single focus, while our techniques
easily extend to multiple focus nodes (see Appendix).

2.2 Why-questions with Exemplars
We characterize Why-questions with several notions.

Query rewrites. We extend primitive operators that define
graph edit distance [9] to rewrite queries as “graphs” with
predicates and edge-to-path matching. We consider eight
types of atomic operators, including four refinement opera-
tors AddL, AddE, RfL, and RfE; and four relaxation opera-
tors RmE, RmL, RxL, and RxE (shown in Table 1). We also
introduce an “empty” operator ∅ for the convenience of for-
malizing the construction of query rewrites (see Section 4).

We say an atomic operator o is applicable toQ , ifQ ′=Q ⊕

{o} (⊕means “apply”) is a pattern query, andQ ′
, Q ifo , ∅.

For example, a relaxation operator RxL(Cellphone.Price ≥

840, Cellphone.Price ≥ 790) is applicable to Q in Fig 1. Op-
erator RmL(u, l) is not applicable if l < FQ (u).

A query rewrite Q ′ of Q is a query obtained by applying
a finite sequence of atomic operators O = {o1, . . . ,om} to Q
(denoted as Q ′ = Q ⊕ O), such that (1) Qi = Qi−1 ⊕ {oi } (Q0

= Q), and (2) oi is applicable to Qi−1 (i ∈ [1,m]).

Exemplars. Given a graph G with node attributes A, an
exemplar E is a pair (T ,C) defined as follows.

(1) T is a table with all the attributes from A. Each tuple
ti ∈ T is a tuple pattern. For each ti .Aj (Aj ∈ A), the value
of ti .Aj can be a constant ci j , a variable xi j , or a wildcard

′_′.

Atomic Operator Classes Description Type Unit Cost

RmL(u, l) Remove literal l ∈ FQ (u) Relax 1

RmE((u, u′), b) Remove edge e with bound b Relax 1 + b
D(G)

RxL(u .A op c , u .A op’ c ′) Relax literal with constant c ′ Relax 1 + |c′−c |
range(A)

RxE((u, u′), b, b′) Relax edge bound b Relax 1 + |b−b′ |
D(G)

AddL(u .A op c) Add literal l to FQ (u) Refine 1

AddE((u, u′), b) Add edge with bound b Refine 1 + b
D(G)

RfL(u .A op c , u .A op’ c ′) Refine literal with constant c ′ Refine 1 + |c′−c |
range(A)

RfE((u, u′), b, b′) Refine edge bound b Refine 1 + |b−b′ |
D(G)

Table 1: Atomic Operators for Pattern Queries

(2) C is a conjunction of literals in the form of xi j op xi′
j′

(variable literal), or xi j op ci j (constant literal), where op ∈

{>, ≥,=, ≤, <}, and ci j is a constant. It enforces value con-
straints on the node tuples that match the tuple patterns.

Representation of E. We consider a PTIME-computable pred-

icate vsim that asserts whether a node v ∈ V ofG matches a
tuple pattern ti (denoted as v ∼ ti). For example, vsim may
assert v ∼ ti if for every ti .Aj ∈ T , v .Aj = ci j if ti .Aj = ci j .

We say a set of nodes VC ⊆ V satisfies an exemplar
E=(T ,C), denoted asVC |= E, ifVC |= T , i.e., for each tuple
pattern ti ∈ T , there exists a node v ∈ VC such that v ∼ ti ,
and VC |= C, i.e., for each literal l ∈ C, VC |= l if:

• l is in the form of xi j = xi′
j′
, and for any pair of nodes

v ∼ ti and v
′ ∼ t ′i in VC , v .Aj = v

′
.A′

j ;

• l is in the form of xi j op xi′
j′
with op ∈ {>, ≥, ≤, <},

and for any v ∼ ti (resp. v
′ ∼ t ′i) in VC , there exists

v ′ ∼ t ′i (resp.v ∼ ti) in VC , such that v .Aj op v
′
.A′

j ; or

• l has form xi j op c , and v .Aj op c for any v ∼ ti in VC .

We say VC ⊆ V is the representation of E in G, denoted
as rep(E,V), if there is no larger node setV ′ ⊆ V , such that
VC ⊂ V ′ and V ′ |= E. V satisfies E, denoted by V |= E, if
rep(E,V) , ∅. We have the following result.

Lemma 2.2. Given graphG and E, it is inO(|V | |E | + |V |2)

time to verify whether V |= E.

Given a query Q with focus uo , rep(E,V) naturally speci-
fies desired entities given E by the following table:

v ∈ rep(E,V) v < rep(E,V)

v ∈ Q(G) RM (“relevant match”) IM (“irrelevant match”)

v ∈ Vuo \Q(G) RC (“relevant cand.”) IC (“irrelevant cand.”)

We define the relevant matches (resp. irrelevant matches)
ofQ w.r.t. E, denoted asRM(E,Q) (resp. IM(E,Q)), as the set
rep(E,V) ∩ Q(G) (resp. Q(G) \ rep(E,Q)), i.e., the matches
that satisfy (resp. do not satisfy) the constraints posed by
E. The relevant candidates RC(E,Q) and irrelevant candi-
dates IC(E,Q) can be defined similarly. Intuitively, a query
rewrite Q ′ should introduce RC as matches, preserve RM,
and exclude IM from Q ′(G).

We shall consider “nontrivial” exemplars where rep(E,V)

, ∅. Indeed, any query can identify desired answers for triv-
ial exemplars. Note that it is inO(|V | |E |+|V |2) time to decide
whether E is nontrivial, following Lemma 2.2.

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1484

Remarks. Exemplar E only enforces value constraints to
describe desired entities instead of requiring complex topo-
logical constraints, which are harder for users to specify. In
practice, it can be (1) directly designated as a set of entities
fromG by non-expert users [22], or (2) declared as SQL state-
ments over node tables by expert users, which is already sup-
ported by e.g., relational graph storage systems [30]. Note
that simply adding the constraints in E to original queries
does not necessarily guarantee desired answers.

Why-question. Given a graph G, a Why-question W is a
tuple (Q(uo), E), where Q is an original query with a fo-
cus uo , and E is an exemplar. An answer of a Why-question
W (Q(uo), E) is a rewrite Q

′, such that Q ′(G) |= E.

Example 2.3. The exemplar E shown in Fig 1 has T with
two tuple patterns t1 = 〈6.2,x1,−〉 and t2 = 〈6.3,x2,x3〉,
and the constraint C that enforces c1 : t2.x3 < 800 and c2 :
t1.x1 > t2.x2. Constraint c1 enforces that for any cellphone
that matches tuple t2, its price must be below $800. c2 poses
a selection condition to enforce a comparison between their
storage. Given E, query rewriteQ ′ is an answer to theWhy-
questionW (Q(uo),E), as Q

′(G)={P3, P4, P5} |= E. Given Q ′

and E: RM = Q ′(G), IM = ∅, RC = ∅, and IC = {P1, P2}.

2.3 Star Views: A Primitive Structure
Query evaluation is a cornerstone step in our framework.
To reduce query processing cost, we introduce a primitive
class of star views and their materialized counterpart.

Star views. Given a query Q = (VQ ,EQ ,LQ , FQ ,uo), a star
viewQ .S = {Q1, . . . ,Qn} ofQ is a set of star queries, where
each star query Qi with a center ui ∈ VQ is a subgraph of Q
induced byui and its neighbors inQ . In addition, it contains
an “augmented” edge (ui ,uo) if uo is not a neighbor of ui ,
with a label as the distance between ui and uo in Q . Every
node and edge in Q is covered by at least a star query in S.

Star tables. Amaterialization of a star viewQ .S(G) = {T1(G),
. . . Tn(G)} contains a star table Ti (G) for each star query Qi

(i ∈ [1,n]), which is a compact encoding of the matches
Qi (G) and their relevance to E. Specifically, (1)Ti [j][ui] =vj
(j ∈ [1,m]), and vj is the jth match of the center Qi (ui ,G);
and (2) For each nodeu inQi (u , ui),Ti [j][u] is a set of pairs
(v, dist(ui ,v)), one for eachmatchv ofu that is a neighbor of
vj . (3) Specifically, for each node v ∈ Vuo and its occurrence
in a star tableTi [j][uo], it maintains a flagv .rev to bookkeep
its relevance to E, as characterized by RM, RC, IM, IC sets.

Example 2.4. Query Q in Fig. 1 can be decomposed into
two star viewsQ .S = {Q01,Q02}. Fig 4 shows the views and
a fraction of their corresponding star tables T01 and T02, re-
spectively. Both views contain the focus node and thus indi-
cate the status of relevant/irrelevant matches/candidates. In-
stead of evaluating from scratch for upcoming query rewrite

Figure 4: Star views and star tables.

Q ′ that may contain any of these stars, one can incremen-
tally verify the candidates of these views are in Q ′(uo ,G).

The star views support fast query evaluation, help to
choose promising query rewrite, and facilitate the tracking
of lineage information. We provide the details in Section 5.2.

3 ANSWERINGWHY-QUESTION

We next introduce measures to quantify “good” query
rewrites. Given a query rewrite Q ′, we introduce two mea-
sures, to quantify the closeness of Q ′(G) to rep(E,V), and
the cost of updating original query Q ′ to Q , respectively.

Answer closeness. We introduce a closeness measure be-
tween Q(G) and representation of E in G.
We start with a closeness measure cl(v, t) that measures

how “good” a node v matches a tuple pattern t in E=(T ,C).
Given a threshold θ , the predicate vsim asserts v ∼ t if
cl(v, t) ≥ θ . Denote asA(t) the attributes of t . The measure
cl(v, t) is defined as

cl(v, t) =

∑
A∈A(t) cl(v .A, t .A)

|A(t)|

Here, cl(v .A, t .A) is 1 if t .A=′_′ or a variable. Otherwise,
for each t .A = c in E, cl(v .A, t .A) ∈ [0, 1] is a similarity score
computed by established metrics. The closeness of a node v
and E=(T ,C) is aggregated as cl(v,E) = maxt ∈T,v∼t cl(v, t).
This resembles the well-established tuple similarity mea-
sures in clustering [27], where two data points are closer
if they have more similar values on more attributes.

Given Q(G) such that Q(G) |= E, the closeness between
Q(G) and E is then computed as

cl(Q(G),E) =

∑
v ∈RM(E,Q) cl(v, E) − λ |IM(E,Q)|

|Vuo |

The closeness is rewarded by the total closeness of the rel-
evant matches in RM(E,Q), quantified by the first term. It is
penalized by the size of irrelevant matches IM(E,Q) intro-
duced by Q , tuned by a factor λ. Both terms are normalized
by |Vuo |, the size of the candidates of focus uo (Section 2).
The larger cl(Q(G),E) is, the better Q should be.

Query updating cost. Our second measure quantifies the
editing cost betweenQ andQ ′ by extending weighted graph
edit distance [9]. Given Q ′ = Q ⊕ O , we assign a cost
c(o) ∈ [1, 2] for each atomic operator o ∈ O (see Table 1),

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1485

which counts the unit cost 1 for all operators, and additional
weight on “relative” difference, normalized by the range of
active domain of A for literal modifications and diameter
D(G) for edge bound updates, respectively. The query up-
dating cost c(O) is computed as c(O) =

∑
o∈O c(o).

Example 3.1. Consider the operators shown in Fig. 1, the
cost is 1 for AddL discount, and 1 + 840−790

150 = 1.33 for
RxL(Cellphone .Price ≥ 840, Cellphone .Price ≥ 790). A set
of operators and their costs are shown below.

operator cost

o1 AddL(Carrier.Discount = 25%) 1

o2 RmE((Cellphone, Sensor),2) 1 2
3

o3 RxL(Cellphone.Price ≥ 840, Cellphone.Price ≥ 790) 1 1
3

o4 RxL(Cellphone.Price ≥ 840, Cellphone.Price ≥ 750) 1.6

o5 RfL(Cellphone.RAM ≥ 4, Cellphone.RAM ≥ 6) 2

o6 RmL(Cellphone.Display) 1

o7 AddL(Cellphone.Display) 1

For the candidate nodes in VCellphone in Fig. 2, we have
cl(P3, t1) = 1, cl(P4, t2) = 1, and cl(P5, t1) = 1. Thus, nodes
{P3, P4, P5} are considered to be relevant candidates, and the
rest ones are irrelevant to E. By applying operators o1, o2,
and o3, query rewriteQ

′ achieves closeness cl(Q ′(G),E) = 1
2

when λ = 1, with updating cost 4.

We now formalize the problem of answering Why-
questionswith exemplars and budgeted query rewriting.We
assume the predicates vsim is given.

Problem statement. Given a graph G, a Why-question
W (Q(uo),E), answer Q(G), and a budget B, the problem of
answering why-question by exemplar (WQE) is to compute
an optimal query rewrite Q ′ = Q ⊕ O∗ such that

O∗
= argmax

O :c(O)≤B

cl(Q ′(G),E)

This problem is nontrivial. The hardness remains robust
even when the matches can be computed in PTIME.

Theorem 3.2. The problem WQE is (1) NP-hard, and (2)
not in APX (not approximable in constant ratio), even when
Q , query rewrites, and G are constrained to be trees.

Proof sketch: We show theNP-hardness by a reduction from
subgraph isomorphism. To show the inapproximability, we
construct a reduction from minimum 3DNF satisfiability, an
optimization problem is known to be not in APX [10]. ✷

Example 3.3. Recall the Why-questions in Fig 1. Query
rewrite Q ′ with closeness cl(Q ′(G),E) = 1

2 and cost 4 is the
optimal query rewrite under cost budget B = 4. Another
query rewrite Q ′′=Q ⊕ {o1,o5,o6} with the same cost, yet
has closeness cl(Q ′′(G),E) = 1

6 , thus is not optimal for B.

Remarks. Ideally, an optimal query rewrite should be the
“ground truth” query in users’ mind. Nevertheless, given

that users are not aware of such queries from scratch but can
easily provide exemplar E, we compute optimal queries that
can “cover” relevant matches and exclude irrelevant ones
from E. Indeed, a ground truth query should have a theo-

retically optimal closeness cl∗ =
|rep(E,V) |

|Vuo |
. We thus align the

optimal query rewriteQ ′ with the “ground truth” queries by
optimizing the answer closeness.

4 Q-CHASE: A CHARACTERIZATION

Before we study feasible algorithms for answering Why-
questions with exemplars, we first introduce Q-Chase, a
new technique that revises Chase [1] to characterize the
computation of pattern queries under exemplar constraints.

Q-Chase. Chase is a well established technique for decid-
ing logical consequence of data constraints. Unlike Chase

that enforces constraints on database instances, Q-Chase
enforces constraints posed by exemplars to graph queries,
and verifies query rewrites by their answer closeness.

Q-Chase step. We start with an initial pair (Q0,E0), where

Q0 = Q , E0=(T0,C0), and T0=C0=∅. Each Q-Chase step i ex-
tends (Qi ,Ei) to (Qi+1,Ei+1) by applying an atomic operator
o (can be ∅; i.e.,Qi+1=Qi) and enforcing constraints in E over
Qi+1(G). We define a Q-Chase step of Q by Ei at (Qi ,Ei) as

(Qi ,Ei)
v,t,l
−→ (Qi+1,Ei+1)

where Qi+1 = Qi ⊕ {o}, and o is an atomic operator (may be
∅), t is a pattern tuple in T , l is a literal in C, and v ∈ Vuo .
Specifically, a Q-Chase step satisfies the following rules:

• If o is a relaxation operator, then (a) ifv < Qi (uo) andv
is a new match of uo inQi+1, setQi+1(G)=Qi (G)∪ {v};
(b) if v ∼ t , add t to Ti+1; and (c) if Qi (G) 6|= l and
Qi+1(G) |= l , add l to Ci+1;

• If o is a refinement operator, then (a) ifv ∈ Qi (uo) and
v < Qi+1(G), set Qi+1(G) = Qi (G) \ {v}; (b) if v ∼ t

and Qi+1(G) \ {v} 6|= T , set Ti+1 = Ti \ {t}; and (c) if
Qi+1(G) 6|= l , set Ci+1=Ci \ {l}.

That is, the query Qi is chased with the constraints (t , l),
yielding a new queryQi+1 with an updated relevantmatches
RM(Ei+1,Qi+1). The step is valid if (1) o is either empty or
applicable to Qi (Section 2), and (2) Qi+1(G) |= Ei+1.

A Q-Chase sequence ρ={(Q0,E0),. . . (Qk ,Ek)} of Q by E

is a sequence of valid Q-Chase steps. A valid Q-Chase se-
quence ρ is canonical, if for any i ∈ [0,k − 1], and any con-
stant literal l=v .A op c (resp. edge e) in Qi , there exists no
operators oj and ok (i ≤ j ≤ k ∈ [0,k − 1]), such that l (resp.
e) is relaxed or removed by oj and refined or added by ok ,
or vice versa. Indeed, oj and ok “cancel out” each other and
can be effectively replaced by a single operator. We consider
valid, canonical Q-Chase sequences in the rest sections.

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1486

Termination of Q-Chase. Denote as ρ(O) the set
of operators enforced to Q by a Q-Chase sequence
ρ={(Q0,E0),. . . (Qk ,Ek)} , we define the cost of ρ as
c(ρ)=c(O). The Q-Chase ρ is terminal if (1) there exists no

(v, t , l) such that (Qk ,Ek)
v,t,l
−→ (Qk+1,Ek+1) is a valid Q-

Chase step, otherwise (2) ∀o, c(ρ) + c(o) ≥ B. The pair
(Qk ,Ek) is the result of a terminal Q-Chase sequence ρ.

We now introduceQ-Chase tree, a symbolic characteriza-
tion of the computational space for optimal query rewrites.

Normal form. A canonical Q-Chase sequence ρ =
{(Q0,E0),. . . (Qk ,Ek)} is in a normal form, if there
exists a number j ∈ [0,k − 1], such that the sub-
sequence ρ1={(Q0,E0),. . . (Q j ,Ej)} only enforces re-
laxation or empty operators, and the sub-sequence
ρ2={(Q j+1,Ej+1),. . . (Qk ,Ek)} only enforces refinement or
empty operators. That is, ρ1 keeps “relaxing” Q , and ρ2
keeps “refining” Q j and follow-up query rewrites.

We say two Q-Chase sequences are equivalent if they
both start with pair (Q0,E0) and yields same pair (Qk ,Ek).
The result below shows that the normal form is an equiva-
lent encoding of canonical Q-Chase sequences.

Lemma 4.1. For any valid canonical Q-Chase sequence ρ
= {(Q0,E0),. . . (Qk ,Ek)}, there exists an equivalent Q-Chase
sequence ρ ′ in a normal form.

We provide a constructive proof that transforms canoni-
cal sequences to equivalent normal forms (see Appendix).

Example 4.2. Recall the queries in Fig 1. A Q-Chase step

fromQ0 toQ1 is (Q0,E0)
p4,t2,c1
−→ (Q1,E1) by applyingo3. Since

o3 is a relaxation operator and node P4 is a new match of uo
in G, we add P4 to Q1(uo ,G). Similarly, we add t2 to T1 and
c1 to C1. For simplicity, we show a sequence of operators
to represent a corresponding Q-Chase sequence. Consider
three sequences ρ1 = 〈o1,o3,o6,o2,o7〉, ρ2 = 〈o1,o3,o2〉, and
ρ3 = 〈o3,o2,o1〉. ρ1 is neither canonical nor in a normal form,
since o6 and o7 “cancel out” each other, and refinement o1 is
performed before relaxation o2. ρ2 is canonical, and ρ3 is its
equivalent sequence in normal form.

Q-Chase tree. Given G, exemplar E and a budget B, a
canonical Q-Chase tree of Q with G for Why-question
W (Q(uo),E), denoted as Q-Chase (W ,G,B), is a tree whose
root is (Q,E0). There exists an edge from (Qi ,Ei) to

(Qi+1,Ei+1) with label (v, t , l), if (Qi ,Ei)
v,t,l
−→ (Qi+1,Ei+1)

is a valid Q-Chase step. Any path from the root to a leaf
(Qk ,Ek) is a terminal canonical sequence ρ in normal form,
with (Qk ,Ek) as its result.

Theorem 4.3. Given a Why-questionW (Q(uo),E), graph
G and budget B, (1) a query rewrite Qk is an answer of
W (Q(uo),E) if and only if there is a path ρ from the root

with a result (Qk ,E) in Q-Chase (W ,G,B), and (2) it is
optimal if no other path ρ ′ has a result (Q ′

k
,E) such that

cl(Q ′
k
(G),E) > cl(Qk (G),E).

The above result can be verified by the invariant that each
edge in Q-Chase (W ,G,B) encodes a valid Q-Chase step
i , such that Qi+1(G) |= Ei+1. Thus Qk (G) |= E, and ρ has
cost c(ρ) ≤ B. Hence, Qk is an answer toW (Q(uo),E) by
definition, and is optimal if ρ ensures a maximum closeness.

The computation of optimal answers for a Why-question
is now equivalent to finding the optimal terminal sequence
that maximizes answer closeness in Q-Chase (W ,G,B).

Interpretation of Q-Chase. Beyond a symbolic encoding
for computing query rewrites, Q-Chase also characterizes
practical search scenarios. (1) It provides useful lineage in-
formation to support exploratory search. At each Q-Chase

step (Qi ,Ei)
v,t,l
−→ (Qi+1,Ei+1), and a match (resp. candidate)

v that is removed from (resp. added to) Qi+1(G), it can eas-
ily trace (a) the operator o that is responsible for the change,
or (b) the affected tuple pattern t and conditions l in exem-
plars, for provenance purpose. (2) Each Q-Chase step may
correspond to a search session in exploratory search, and its
time cost reflects system response time [25, 29]. We verify the
application of Q-Chase in these scenarios (see Section 7).

5 Q-CHASE-BASED ALGORITHMS

Given Theorem 4.3, an immediate yet naiveQ-Chase imple-
mentation exhaustively enumerates every sequence in Q-
Chase (W ,G,B). This is clearly not feasible for large G. We
next develop an efficient implementation of Q-Chase.

5.1 Computing Optimal Query Rewrite

We first introduce an anytime implementation of Q-Chase.
The algorithm can be interrupted at any time to provide a
query rewrite along with matches that are close to E. More-
over, it has a bounded delay time (the cost to update query
rewrite) to improve the answer, and early terminates when-
ever possible, without enumerating all Q-Chase sequences.

Algorithm. The algorithm, denoted as AnsW and illus-
trated in Fig. 5, adopts a best first search strategy with back-
tracking to simulate the traversal ofQ-Chase (W ,G,B), and
reports the best query rewrite upon request.

Auxiliary structures. Algorithm AnsW dynamically main-
tains a primary priority queue P to record query rewrites
and their (estimated) matches, ranked by their closeness.
Each entry P[Q ′] records (1) a pair 〈Q ′

,Q ′(G)〉, where
Q ′=Q ⊕O is encoded withQ and operatorsO , and (2) a sec-
ondary priority queueQ ′

.O, that records applicable updates
for Q , ranked by their pickiness as a measure of their likeli-
hood to improve closeness (see “Picky Operators”).

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1487

Algorithm AnsW

Input: graph G, Why-questionW =(Q,E), budget B.
Output: the optimal query rewrite Q∗ that answersW .

1. set R(uo) := rep(E,V); I (uo):=Vuo \ R(uo); set cl
∗ =

|R(uo) |
|Vuo |

;

2. Q(G) := Match(Q,G); Q0 = Q∗:=Q ;
3. initializes priority queue P:={〈Q0,Q0(G)〉};

/* best-first Q-Chase with backtracking */
4. while P is not empty do

5. pair 〈Q,Q(G)〉:= P.peek();
/* decides to “relax” or “refine” and finds next best operator */

6. operator o := NextOp (〈Q,Q(G)〉,R(uo), I (uo),B, cl(Q
∗), cl∗);

7. if o := ∅ then P.poll(); continue ; /* Backtracking */
/* simulating Q-Chase steps */

8. Q ′ := Q ⊕ o; Q ′(G) := Match(Q ′
,G); update cl(Q ′);

/* prune non-promising Q-Chase sequences at Q ′ */
9. if Prune (Q ′

,Q ′(G)) then continue ;
10. if Q ′(G) |= E and cl(Q ′) > cl(Q∗) then

11. Q∗ := Q ′; cl(Q∗) = cl(Q ′);
12. return Q∗ upon request; /* anytime response */
13. if cl(Q∗) = cl∗ then break ; /* theoretically optimal */
14. P := P.enqueue (〈Q ′

,Q ′(G)〉);
15. return Q∗;

Figure 5: Algorithm AnsW: main framework

Given a Why-questionW (Q(uo),E), AnsW computes op-
timal answer Q∗ with the following steps.

(1) AnsW first initializes a set R(uo) = rep(E,V), the projec-
tion of E inV (“relevant set”), and I (uo) =Vuo \R(uo) (“irrel-
evant set”), and computes a theoretical upper bound of the

closeness cl∗ = |R(uo) |
|Vuo |

(line 1). Indeed, cl∗ is the maximum

closeness a query rewrite can achieve via Q-Chase. It then
computes thematchesQ(G) by invokingMatch (see “Query
Processing”), and initializes the primary queue P with Q

(as Q0) and Q(G) (as Q0(G)) (lines 2-3). This simulates the
creation of the root of Q-Chase (W ,G,B).

(2) AnsW then performs best first search (lines 3-14).

(a) It starts with a verified queryQ to be extended with new
operators (encoding a node (Q,E) in Q-Chase (W ,G,B)

tree), and invokes a procedureNextOp to produce operators
(lines 5-6). Specifically, procedure NextOp decides

• whether to relax or refine Q , thus enforces a normal
form of the underlying canonical Q-Chase sequence
that it simulates (see “Query Pruning”); and

• dynamically produces a set of “picky” operators Q .O
that are likely to improve the closeness (see “Picky
Operators”), under a certain generation mode.

(b) It then constructs a new query rewrite with the best
operator and evaluate the closeness (simulating a single Q-
Chase step), and updates the best query rewriteQ∗ so far ac-
cordingly (lines 8-11). It also prunes unpromising Q-Chase
sequences (procedure Prune; line 9) for early termination.

Figure 6: Algorithm AnsW: Simulation of Q-Chase.

The above process is controlled by priority queue P.
When there is no applicable operator (line 6), it completes
a terminal Q-Chase sequence and backtracks to a new se-
quence. The anytime process (early) terminates when no
new query rewrite is extendable under budget B (line 4),
or the theoretically optimal query rewrite Q∗ is identified
(line 13); and returns Q∗ by demand (line 12).

Example 5.1. We show a step-by-step overview of AnsW
in simulating a Q-Chase sequence that chase from Q in
Fig. 1 to Q2. (1) AnsW first computes Q(G) (assume it is not
known) with procedure Match, and initializes the primary
priority queue P with Q and Q(G). (2) Procedure NextOp

then generate a set of “picky” atomic operators fromQ that
help in improving its closeness (to be discussed). It returns
o1 as the best operator. (3) Setting Q ′

1=Q ⊕ {o1}, it updates
cl(Q ′

1). This completes a single Q-Chase step from Q to Q ′
1.

As the currentQ-Chase sequence has no “relaxation” phase,
Q is continuously refined. (4) As no irrelevant matches can
be removed, cl(Q ′

1) can no longer be improved.

Steps (1)-(4) completes the simulation of a terminal Q-
Chase sequence and backtracks from Q ′

1 to Q . In steps (5)-
(7), it simulates another terminal Q-Chase sequence in nor-
mal form, where Q is first relaxed to Q2 with operator o2.
As all the relevant matches are included, AnsW terminates
relaxation phase and triggers refinement to remove irrel-
evant matches. This refines Q2 to Q ′, and terminates Q-
Chase due to that no irrelevant matches can be removed. As
cl(Q ′) ≥ cl(Q ′

1), it returns Q
′ as the optimal query rewrite.

We next introduce the three procedures NextOp, Prune,
andMatch, all access the star views structures (Section 2.3).

5.2 Match: Querying with Star Views

Given a query Q , Procedure Match constructs star views
Q .S by edge decomposition and materializes Q .S if neces-
sary. It then computes Q(G) over the star tables as materi-
alized views, by only verifying the candidates v ∈ Vuo that
is a match of uo in star views. The verification optimizes
the computation of P-homomorphism [5] with a Threshold-
Algorithm based strategy that joins the matches of stars that

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1488

Procedure NextOp

Input: queue entry {〈Q,Q(G)〉} of P, relevant set R(uo), irrelevant
set I (uo), cost bound B

Output: a best operator o to be applied on Q .
1. if Q .O := ∅ then /* Q is first visited; generate operators */
2. initialize Q .O; extract O from Q (Q=Q0 ⊕ O);

/* enforce “refinement-only” to current Q-Chase */
3. if RefineCond (Q .S(G), cl(Q), cl(Q∗)) then
4. construct picky edges EP ⊆ EQ ;
5. for each picky edge (u,u ′) ∈ EP do

6. Q .O.enqueue(GenRf(Q .S(G),EP ,B));
/* generate relaxation operators for current Q-Chase*/

7. if RelaxCond (O, cl(Q), cl∗) then

8. construct picky edges E ′
P
⊆ EQ ;

9. for each picky edge (u,u ′) ∈ E ′
P
do

10. Q .O.enqueue(GenRx(Q .S(G),E ′
P
,B));

/* Q is revisited; returns next operator with best pickiness */
11. return Q .O.poll ();

Figure 7: Procedure NextOp

cover Q at runtime [36]. Match terminates the verification
as soon as v is verified to be a match. (3) It updates the rel-
evance flag v .stat (Section 2.3) inQ .S(G) withQ(G), which
will be consulted by NextOp for operation generation.

Caching the Stars. Q-Chase sequences tend to produce

highly similar queries, with minor changes in predicates
or edge bounds. AnsW exploits this property and dynami-
cally maintains a global cacheV of materialized star views,
which can be accessed by Match at runtime. It adopts a re-
placement policy for each cached star view, by (a) counting
a “hit” number from query rewrites, incremented each time
it is used for incremental evaluation, and decayed by a time
factor, and (b) applying a least-hit policy to replace the star
view with minimum hit rate.

5.3 NextOp: Generating Picky Operators

Given a query rewriteQ to be extended, procedure NextOp
generates a set of applicable operators Q .O, and chooses a
best one o ∈ Q .O, such that Q ′=Q ⊕ {o} may improve the
closeness cl(Q) (line 6 in AnsW). We call such o “picky opera-
tor”, and apply a dichotomy strategy that consults star views
Q .S (computed by Match) to compute picky operators.

Generate Picky Relaxation. Relaxation operators (RxL,
RxE, RmE, and RmL) only introduce new matches from can-
didates. Thus, a picky relaxation operator should introduce
matches from relevant candidates (“new relevant matches”,
denoted by RC(o)), and avoid introducing matches from IC

nodes. Given this intuition, NextOp performs the following.

(1) It first identifies a set of picky edges Ep from Q .S over
which the associated operators will be relaxed. The idea is
to collect pattern edges (ui ,uo) (resp. (uo ,ui)) in each starQi ,
such that there exists at least an RC node vo (vo .stat =‘RC’)

reachable to (from) a candidate of ui . Indeed, it suggests by
relaxing edge and node condition on such picky edges in Ep
will likely to introduce uo as a new match.

(2) For each picky edge w.l.o.g. e = (uo ,u
′), it invokes a pro-

cedure GenRx to produce Q .O, by relaxing literals or edge
label, guided by the candidates of uo and u ′, and Q .S(G).
For each operator o, it also computes a pickiness score as

p(o) =

∑
v∈RC(o) cl(v,E)

|Vuo |
, where RC(o) is an overestimation of

RC(o), and includes all RC nodes of uo induced by the can-
didates over picky edges.

Lemma 5.2. For any applicable relaxation operator o of Q ,
p(o) ≥ cl(Q ⊕ {o},E) − cl(Q,E).

That is, the pickiness p(o) estimates the gain of closeness
if o is applied. The operators are sorted by p(·) in Q .O. The
best one is returned to simulate a Q-Chase step.

Procedure GenRx. We show how GenRx generates RmE,
RmL and RxL. We defer the discussion of RxE to Appendix.

Generating RmE and RmL. Given a picky edge e = (uo ,u
′),

GenRx simply adds RmE(e) and for all literals l ∈ FQ (uo)

(resp. FQ (u
′)), GenRx adds RmL(uo , l) (resp. RmL(u ′

, l)).

Generating RxL. Let adom(A,EP) be the set of distinct values

ofv .Awith allv ∈ RC that may becomematches upon relax-
ing EP . For end node u of a picky edge e=(u,u ′) and literals
l = (u .Ai op c) ofu,GenRx sorts and discretizes adom(A,EP)

that has values satisfying relaxed literal, and generates an
atomic RxL with two rules below. (1) If op ∈ {<, ≤,=},
adds RxL(l , u .Ai ≤ a), where a is the smallest value in
adom(A,EP) and a > c; (2) if op ∈ {>, ≥,=}, adds RxL(l ,
u .Ai ≥ a), where a is the largest value in adom(A,EP) and
a < c . It generates RxL similarly for node u ′.

The above rule applies to numerical attributes. For cate-
gorical attributes where attribute values are not comparable
(l = (u .Ai = c)), it simply adds RmL(l) and leaves Q to be re-
fined by AddL (to be discussed).

Example 5.3. Consider the relaxation operator o3 shown
in Fig 6. Since it can potentially identify {P3, P4} as relevant

matches,RC(o3) = 2. Similarly,o2 can only identify P3 due to

a corresponding picky edge (Cellphone, Sensor), RC(o2) = 1.
Thus o3 is preferred to chase Q rather than o2.

Generate Picky Refinement. Procedure NextOp identi-
fies picky edges from Q .S as those with matches involving
RM nodes in Q .S(G), and invokes a procedure GenRf to
generate refinement operators ranked by their (estimated)
pickiness. Similarly, as the relaxation counterpart, NextOp
chooses refinement operator o that tends to maximally re-
move irrelevant matches (denoted as IM(o)) while mini-
mally remove the relevant ones (denoted as RM(o)). It ranks

the operator o by its pickiness p ′(o) =
λ |IM(o) |−

∑
v∈RM(o) cl(v,E)

|Vuo |
.

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1489

Figure 8: Picky operator generation by views

Here IM(o) overestimates IM(o); and RM(o) underestimates
RM(o) by only counting RM nodes that are no longer candi-
dates. One can verify that p ′(o) ≥ cl(Q ⊕ {o},E) − cl(Q,E).

Procedure GenRf. We show how GenRf generates AddL

and RfE, and show the cases of AddE and RfL in Appendix.

Generating AddL. For each node u and match v ∈ Q(u,G)

reachable by some RM node vo , and each attribute-value
pairs (Ai ,ai) ∈ fA(v) that Ai < FQ (u), it enforces a single
AddL(u,A = ai) with the hope that irrelevant matches do
not satisfy this constraint.

Generating RfE. For each edge e ∈ EQ with LQ (e) > 1,

GenRf introduces RfE(e,LQ (e), LQ (e) − 1).

Example 5.4. We illustrate how the star views and star ta-
bles are used to generate AddL in Fig. 8. GenRf generates
AddL(Carrier,Discount=25%) since (Carrier.Discount , 25%) ∈
fA(Sprint) and is not specified in FQ (Carrier). As IM nodes
{P1, P2} no longer satisfy this new constraint, they will be
excluded if AddL(Carrier,Discount=25%) is posed.

Completeness guarantee. We present a completeness property

for optimal query rewrite, i.e., it suffices to chase Q with
the picky operators generated from GenRx and GenRf only,
without the enumeration of Q-Chase (see Appendix).

5.4 Prune: Pruning Q-Chase Sequences

We finally introduce a major pruning strategy (Prune) guar-
anteed byQ-Chase in normal form. Observe that cl+(Q,E) =
∑
v∈rep(E,Q) cl(v,E)

|Vuo |
, i.e., the closeness contributed by RM nodes

of Q , is a valid upperbound for cl(Q,E). Moreover, for any
Q-Chase sequence ρ in normal form, with “relaxation-only”
subsequence ρ1 followed by “refinement-only” subsequence
ρ2 we have the following.

Lemma 5.5. For any query rewrite Q1 and Q2=Q1 ⊕ O , (1)
if Q2 is obtained in ρ1 from Q1, and cl+(Q2,E) = cl∗ (the-
oretically optimal closeness), then cl(Q2) ≥ cl(Q3) for any
Q3=Q2 ⊕ O ′, and O ′ is any set of relaxation operators; (2) if
Q2 is obtained in ρ2 from Q1, then cl+(Q1,E) ≥ cl(Q2,E).

The result can be verified by definition of relaxation and
refinement operators. It leads to pruning strategies below.

“Relaxation” or “Refinement”? Procedure NextOp reduces

unnecessary Q-Chase extension by checking two condi-
tions. Given Q=Q0 ⊕ O and Q is visited in Q-Chase for
the first time, the condition RefineCond (line 3) verifies
whether: (1) there exists IM nodes in Q(G) to be removed,
and (2) cl+(Q,E) > cl(Q∗). Putting together, it generates re-
finement operators atQ only when cl(Q,E) can be possibly
improved by removing IM nodes (Lemma 5.5(2)). Similarly,
it generates relaxation operators only when Q is not refined
earlier and cl+(Q) < cl∗ (thus cl+(Q) can be improved by
relaxation (Lemma 5.5(1)), asserted by RelaxCond (line 7).

Early termination. Procedure Prune safely prunes the en-

tire subtree of Chase(W ,G,B) at node Q , whenever Q is
at “refinement-only” sequences and cl+(Q,E) ≤ cl(Q∗). By
Lemma 5.5(2), no query rewrite refined from Q has larger
closeness than discovered cl(Q∗). Moreover, it terminates
whenever cl(Q)=cl∗, i.e., theoretically optimal closeness.

Correctness and complexity. The correctness of AnsW
follows from that it simulates the computation of Q-Chase
(W ,G,B), and by Theorem 4.3. Moreover, it correctly prunes
query rewrites that are not optimal, by Lemma 5.5.

AnsW has an anytime performance: it returns the best
query rewrite identified so far upon request, and finds opti-
mal answer given enough time. Given a verified queryQ , the
delay time it takes to simulate aQ-Chase step and updatesQ

is inO(|Q .S(G)|
|Q |+1
bm

) time, where bm is the largest number

posed by a RxE, and |Q .S(G)|bm is the bm-hop neighbors of
the edges in star views inG. We found thatAnsW has fast re-
sponse time over largeG (see Section 7). This also indicates
feasible application of AnsW in exploratory graph search.

Generating Explanations. The lineage information asso-
ciated to query rewrites produced by AnsW can be eas-
ily tracked by a structure called differential table. Given
Q ′=Q⊕O following aQ-Chase sequence, a differential table
TD is a set of triples 〈e,o,Vd 〉, such that (1) e is a picky edge
from NextOp, (2) o is a picky operator induced by e , and (3)
Vd ∈ Q ′(G) \Q(G) is either in RM(o) or IM(o). The table TD
can be easily maintained by tracing star tables.

Differential tables provide additional explanations for the
suggested queries. Fig 6 illustrates a differential table TD .
For example, the first tuple tells us that by applying RmE

on edge e=(Cellphone, Sensor), P3 becomes a relevant match,
due to the removal of e . This helps users to identify new
exemplars, closing the loop of query-response-suggestion
workflow in exploratory search (Fig. 3).

5.5 A Faster Heuristic

Wenext outline a variant ofAnsW, which preserves anytime
performance but with tunable performance.

Q-Chase with Beam Search. The faster and tunable
heuristic, denoted asAnsHeu, performs a breadth-first beam

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1490

searchwith beam size k . It explores at most k query rewrites
extended from a query, induced by top-k operators ranked
by their pickiness. At any time, NextOp generates at most k
operators for each operator class (at most 8k operators) for
each query rewrite. Moreover, each time a newly evaluated
query rewriteQ ′ is added to P, AnsHeu evicts other queries
with lower closeness than Q ′ from P, keeping |P | ≤ k .

AnsHeu does not return optimal answer, yet is a fast vari-
ant that often returns desirable query rewrites due to the
effectiveness of picky operator generation. We found that it
can improve the efficiency of AnsW by 4.87 times with 34%
loss of answer quality compared to AnsW (Section 7).

6 EXTENSIONS

We next show that Q-Chase-based framework readily
yield approximation algorithms for special cases of Why-
questions, and extends to suggest top-k queries.

6.1 Approximating Q-Chase

Approximating Why-Many. Why-many question is a
variant of Why-question [32], where the goal is refining Q
to remove as many as possible matches from Q(G) that are
irrelevant to E. An equivalent interpretation is to chase Q
with “refinement-only” operators in Q-Chase. More for-
mally, it is formulated as follows.

• Input: a graph G, a Why-Many question WM (Q,E)

with original query Q , exemplar E, and budget B;
• Output: an answerQ ′=Q ⊕O forWM (Q,E) such that
(1) O contains refinement operators only and c(O) ≤
B; (2) Q ′(G) |= E, and cl(Q ′

,E) is maximized.

Fixed-parameter approximability. While WQE is hard to ap-

proximate (Theorem 3.2), we study its fixed-parameter ap-
proximability [18]. Real-world pattern queries are usually
small [8]. For example, 97.2% of SWDF and 67% of DBPe-
dia queries contain a single triple pattern. Under this practi-
cal assumption, we parameterizeWhy-Many questionswith
two parameters. (1) k1 = |Q |: including its attribute size |A|

and edge size; and (2) k2: maximum size of active domain of
an attribute in rep(E,V). We have the following result.

Theorem 6.1. Answering Why-Many question is fixed-
parameter 1

2 (1 −
1
e
)-approximable with fixed k1 and k2.

We provide a constructive proof for Theorem 6.1 by pre-
senting an approximation algorithm, denoted as ApxWhyM.

Approximation algorithm. The algorithm ApxWhyM (illus-

trated in Fig. 9) computes a refined query Q ′ without sim-
ulating a complete Q-Chase tree. It has two steps.

(1) Given query answers Q(G) and its irrelevant matches
I (uo) (initialized in line 1), it invokes a procedure SeedRf

to identify a “seed” set of picky refinement operators Os

Algorithm ApxWhyM

Input: a graph G, a Why-many questionWM (Q,E), budget B,
Output: a query rewrite Q ′ that answersWM .

1. Q(G):=Match(Q,G); set I (uo) = Q(G) \ rep(E,Q);
2. set Os := SeedRf(Q, I (uo),G,B); O1 := ∅;
3. set O2 := argmax{w({o}) : o ∈ Os , c(o) ≤ B};

/*greedy selection of refinement operators*/
4. while Os , ∅ do

5. o∗ := argmax{
w (O1∪{o })−w (O1)

c(o)
: o ∈ Os };

6. if c(O1) + c(o
∗) ≤ B then

7. O1 := O1 ∪ {o∗}; Os := Os \ {o
∗};

8. if c(O1) ≥ B then break ;
9. O′

= argmaxi ∈[1,2] cl(Oi);
10. construct query Q ′ = Q ⊕ O′;
11. return Q ′;

Figure 9: Algorithm ApxWhyM
(line 2). For each seed operator o, it keeps track of a set of
irrelevant matches IM(o) “covered” by o. That is, it ensures
the removal of IM(o) from Q ′(G) for any Q ′ obtained by a
Q-Chase sequence with o from Q .

(2) Once Os is identified, it solves a budgeted weighted set
cover problem, treating each operator o as a weighted set
that contains IM(o) ⊆ I (uo). To approximate optimal close-
ness, it assigns a weight to each o for Q ′

= Q ⊕ {o} as
w(o) = cl(Q ′(G),E) − cl(Q(G),E) to quantify the gain of
closeness by rewarding the removal of IM(o) and penalizing
the elimination of RM(o).

The rest of ApxWhyM follows a greedy selection strategy,
which iteratively updates set O1 with an operator having
maximized closeness gain, compared with set O2 initialized
by the first best operator. The process repeats until O1 ex-
ceeds the cost bound (line 9) or all the seed operators are
processed (line 4). The query rewriteQ ′ is constructed with
the one having better closeness (lines 9-11).

Due to the limited space, we defer procedure SeedRf and
performance analysis in the Appendix.

Answering Why-Empty Questions. Given a query Q

with no relevant matches to exemplar E, aWhy-Empty ques-
tion (or differential query [32]) aims to revise Q such that
at least a relevant match is identified. The answer to Why-
Empty questions helps bridge missing answers and user
search intention. We focus on clarifying empty answers for
star queries using pragmatic operators including RmL and
RmE. Such queries are quite common. For example, 99.7% of
DBPedia and SWDF queries are star-shaped [8].

Lemma 6.2. Answering removal-only Why-Empty ques-
tions is in O(|Q | |rep(E,V)| |V |) time.

Algorithm. We outline the algorithm, denoted as AnsWE.

The main idea is to perform a guidedQ-Chase fromQ , with
atomic operators whose removal introduce new matches
that are either directly in rep(E,V), or are on a path from

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1491

rep(E,V) to the nodematchesQ(u,G) for some pattern node
u. To this end, it (1) generates a set of RmL operators that
relax the predicates at uo , (2) produces a set of picky edges
adjacent to uo , and (3) generates a set of paths (with at most
two edges) between uo to a leaf node in Q . It then gener-
ates a set of RmL and RmE operators over picky edges and
picky paths, along with their associated RC sets. Finally, it
finds a relevant candidate that is associated with at most B
generated relaxation operators (see details in Appendix).

6.2 Top-k Query Suggestion

The algorithmAnsW can be readily extended to return top-k
query rewrites, preserving the optimality guarantee. To this
end, one only need tomodify its early termination condition
(procedure Prune). Instead of comparing cl(Q∗) (the current
optimal closeness) with the estimated closeness cl+(Q,E) at
refinement-only stage, we maintain Q∗

k
as the kth highest

closeness, and prune the entire sequence at refinement-only
stage, whenever cl+(Q,E) ≤ cl(Q∗

k
).

7 EXPERIMENTAL EVALUATION

Using real-life attributed graphs, we conduct experiments to
evaluate the effectiveness and efficiency of our algorithms.

Experimental setting. We use the following setting.

Datasets. We use three real-life data graphs and a bench-
mark dataset. (1) DBpedia1 consists of 4.86M entities and
15M edges, where each entity carries one of the 676 labels
(e.g., Person, Building), and on average 9 attributes, (2) IMDB2,
contains 1.7M nodes (e.g.,movies) and 5.2M edges (e.g., acted
in, rating). Each node has on average 6 attributes (e.g., rating,
co-actors), and (3) Offshore3 contains 839K offshore entities
(e.g., companies, countries, person), 3.6M relationships (e.g., es-
tablish, close) and 433 labels. It has on average 4 attributes
and covers 40 years of offshore entities and financial activ-
ities. We also use a benchmark synthetic knowledge graph
denoted as WatDiv [3] with 521K nodes and 9.1M edges. It
contains e-commerce information e.g., Purchase and Retailer.

“Ground truth” Queries. We adopt two query benchmarks.

ForDBpedia, we useDBPSB benchmark [20] that simulates
real-world query workload. We first identify 40 query tem-
plates from DBPSB, where each DBPSB template carries a
focus node originally carried from its SPARQL format. We
then instantiate each template by assigning node labels from
the candidates of its focus node, and up to 3 search predi-
cates per node, including those from the benchmark queries.
Similarly, we instantiate 20 templates fromWatDiv [3].

1http://dbpedia.org
2https://www.imdb.com/interfaces/
3https://offshoreleaks.icij.org/

For IMDB andOffshore, we implement a query generator
that generates diversified queries, following WatDiv query
generator [3]. For each query, we ensure that it has isomor-
phic answer inG (except forWhy-Empty questions) and ran-
domly select a focus node.

We consider each query Q∗ instantiated from the bench-
mark as a “ground truth” query. Each such query has a de-
sired answer Q∗(G) induced by subgraph isomorphism.

Generating Why-Questions. Given a ground truth query Q∗

and answer Q∗(G), we “disturb” Q∗ by injecting up to 5
atomic operators to create a query Q . We then set T =
Q∗(G) \ Q(G), and C=∅ (unless declared by users; see Exp-
5). We construct Why questions with input Q , Q(G) and
E=(T ,C). By default, we set budget B = 3. We observed that
setting B close to real-world query size [8] suffices to obtain
query rewrite with high quality, as verified by our tests.

Algorithms. We implemented Q-Chase-based algorithms,

all in Java: (1) Exact (anytime) algorithms: AnsW (includ-
ing caching and pruning strategies), with two variants: (a)
AnsWnc, its variant without caching; and (b) AnsWb, by re-
moving both pruning strategies and caching; (2) Heuristics:
AnsHeu that applies tunable beam search, and AnsHeuB, a
variant of AnsHeu that replace picky operator generation
with random selection; (3) Tractable algorithms ApxWhyM

and AnsWE, for Why-Many and Why-Empty questions, re-
spectively. (4) While existing query relaxation methods do
not consider examples, and query-by-example cannot sug-
gest queries, we implemented FMAnsW, a frequent pattern
mining algorithm that applies the methods in [21], to sug-
gest queries as frequent subgraph patterns around Vuo .

For a fair comparison, all the algorithms use a star-based
query processing and access a fast distance index [2].

We deployed the algorithms on a machine powered by an
Intel Xeon processor with 2.3GHz. Each test uses 50 queries
and is repeated 5 times, and the average result is reported.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluate the efficiency of our
algorithms, including AnsHeu, AnsW, and AnsWnc, com-
pared with AnsWb and FMAnsW. Fig. 10(a) verifies the
following. (1) It is quite feasible to answer Why-questions
for large graphs. AnsW takes on average 37, 21, 16, and
57 seconds on DBpedia, IMDB, Offshore, and WatDiv, re-
spectively. (2) The optimization techniques significantly im-
prove the efficiency of the algorithms. On average, AnsW
outperforms FMAnsW, AnsWb, and AnsWnc by 10.82, 3.41,
and 2.1 times, respectively. We also observe that AnsHeu
quickly converges to near-optimal solutions (on average 4
seconds), due to picky operator generation and pruning.

Scalability.We sample 5 versions of DBpediawith edge size

varied from 7M to 15M . Fig. 10(b) verifies that both AnsW

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1492

http://dbpedia.org
https://www.imdb.com/interfaces/
https://offshoreleaks.icij.org/

 1

 10

 100

 1000

DBPedia IMDB Panama WatDiv

T
im

e
 (

s
e
c
o

n
d

s
)

FMAnsW
AnsWb

AnsWnc

AnsW
AnsHeu(k=5)

(a) Efficiency

 1

 10

 100

 1000

7M 9M 11M 13M 15M

T
im

e
 (

se
c
o
n
d
s)

AnsWb
AnsWnc

AnsW

AnsHeu(k=1)
AnsHeu(k=5)

(b) Varying |G | (DBpedia)

 1

 10

 100

 1000

 1 2 3 4 5 6

T
im

e
 (

se
c
o
n
d
s)

AnsWb
AnsWnc

AnsW

AnsHeu(k=1)
AnsHeu(k=5)

(c) Varying |EQ | (DBpedia)

 1

 10

 100

 1000

 1 2 3 4 5

T
im

e
 (

se
c
o
n
d
s)

AnsWb
AnsWnc

AnsW

AnsHeu(k=1)
AnsHeu(k=5)

(d) Varying B (DBpedia)

 1

 10

 100

 1000

 1 2 3 4 5

T
im

e
 (

se
c
o
n
d
s)

AnsWb
AnsWnc

AnsW

AnsHeu(k=1)
AnsHeu(k=5)

(e) Varying B (IMDB)

 1

 10

 100

 1000

5 10 15 20 25

T
im

e
 (

se
c
o
n
d
s)

AnsWb
AnsWnc

AnsW

AnsHeu(k=1)
AnsHeu(k=5)

(f) Varying T (DBpedia)

 1

 10

 100

 1000

5 10 15 20 25

T
im

e
 (

se
c
o
n
d
s)

AnsWb
AnsWnc

AnsW

AnsHeu(k=1)
AnsHeu(k=5)

(g) Varying T (IMDB)

 1

 10

 100

 1000

Star Tree Cyclic

T
im

e
 (

s
e
c
o

n
d

s
)

AnsWb
AnsWnc

AnsW
AnsHeu(k=1)

(h) Varying topology (DBpedia)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

DBPedia IMDB Panama WatDiv

re
la

ti
v

e
 c

lo
s
e
n

e
s
s

AnsWb
AnsHeu(k=5)

AnsHeu(k=1)
AnsHeuB

(i) Effectiveness

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

re
la

ti
v

e
 c

lo
se

n
e
ss

AnsW
AnsHeu(k=1)

AnsHeu(k=5)
AnsHeuB

(j) Varying |EQ | (DBpedia)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

re
la

ti
v

e
 c

lo
se

n
e
ss

AnsW
AnsHeu(k=1)

AnsHeu(k=5)
AnsHeuB

(k) Varying B (DBpedia)

 0.4

 0.6

 0.8

 1

0 2 3 4 5 6

re
la

ti
v

e
 c

lo
se

n
e
ss

Time (seconds)

AnsW
AnsHeu(k=1)

AnsHeu(k=5)
AnsHeuB

(l) Time vs. Accuracy

Figure 10: AnsweringWQE: Efficiency and Effectiveness

and AnsHeu scale well with |G |, and are less sensitive com-
pared with AnsWb, due to star view based optimizations.

Varying query size. Varying number of edges |EQ | from 1

to 6 (with fixed budget B=3), we report the efficiency of
our algorithms over DBpedia in Fig. 10(c). While all the
algorithms take more time to verify larger queries, AnsW
and AnsHeu are less sensitive to the query size. This is be-
cause the star views reduce the cost of evaluating new query
rewrite whenever possible. For example, AnsHeu returns
query rewrites in only 5 seconds when |EQ |=6.

Varying cost bound. Varying the budget B from 1 to 5,

Fig. 10(d) and Fig. 10(e) show that all the algorithms take
more time to consume a larger budget over DBpedia and
IMDB, respectively. AnsHeu is the least sensitive algorithm,
since it does not backtrack Q-Chase sequences as others.

Varying exemplars. We evaluate the impact of changing the

size ofT inWhy-questions (which contains entities fromG).
We simulate exploratory search by adding more number of
exemplars in each session such that T is varied from 5 to 25.
As shown in Fig. 10(f) and Fig. 10(g), all the algorithms but
AnsHeu requiremore timewith largerT over bothDBpedia

and IMDB. Indeed, it needs to inspect more query rewrites
triggered by picky operators from larger T . AnsHeu is rel-
atively less sensitive, as it spawns up to a fixed number of
Q-Chase steps without backtracking.

Varying Topology. Fig. 10(h) tells us that it takes less time to

answer Why-questions for star queries than for trees and
cyclic ones. The latter two decompose to more stars in the
procedureMatch, and take more time for joining star views.

Exp-2: Effectiveness of answering Why-questions.
Given a benchmark queryQ∗ and answerQ∗(G) as “ground
truth”, and a query rewriteQ ′ reported by an algorithm, we

define a relative closeness as δ (Q ′
,Q∗) = cl(Q∗(G),E)

cl(Q ′(G),E)
, which

measures how well Q ′ “recovers” the true answer of the
ground truth query. The higher δ is, the better. Interest-
ingly, as the ground truth Q∗ guarantees optimal closeness,

δ (Q ′
,Q∗) degrades to |Q ′(uo)∩Q

∗(uo) |
|Q ′(uo)∪Q∗(uo) |

, i.e., the Jaccard coeffi-

cient of the answers, which justifies our metric. Note that δ
is computable only when Q∗ is known. Our algorithms op-
timize cl(Q ′(G),E) as an absolute measure.

Fig. 10(i) reports the relative closeness achieved by the al-
gorithmswithin cost boundB. (1)AnsW constantly achieves

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1493

Figure 11: Case study: real-world queries

the maximum closeness among others, which also verifies
our closeness measure cl(·). (2) Increasing the beam size
for algorithm AnsHeu consistently improved the closeness
over all the datasets. Moreover, it can suggest good query
rewrites with relative closeness on average 66%.

Varying query size. We report the impact of |EQ | (varied

from 1 to 6 by injecting more operators to ground truth
queries) to the relative closeness in Fig. 10(j). All the algo-
rithms achieve higher closeness for smaller queries. Indeed,
the answers Q(G) usually departed “further” from ground
truth Q∗(G) as more operators are injected to Q∗, making it
more difficult to find good query rewrites under fixed bud-
get. On the other hand, AnsW and AnsHeu are able to pre-
serve 89% and 71% (with beam size 1) of relative closeness
over all cases, respectively. Moreover, the relative closeness
is improved to 80%with beam size up to 5 forAnsHeu. These
indicate their ability in recovering true answers in practice.

Varying cost bound. Fig. 10(k) tells us that all algorithms

achieve better relative closeness with larger budget B. The
exact algorithm achieves optimal closeness when B=5. This
is consistent with the changes we injected to ground truth.

Exp-3: Anytime performance. We measure δt =

δ (Q ′
t ,Q

∗) where Q ′
t is the query rewrite at time t discov-

ered by an algorithm. Setting a time bound t = 6 seconds,
Fig. 10(l) shows that AnsW converges to high relevant close-
ness fast. For example, it achieves δt above 90% in less than
4 seconds. AnsHeuB takes longer time to achieve the same
relative closeness, mainly due to its lack of backtracking.

Exp-4: Answering Why-Empty and Why-Many. We
also evaluate the efficiency and effectiveness of answer-
ing Why-Many and Why-Empty questions. Due to limited
space, we report the results (Exp-4) in Appendix.

Exp-5: User Study. To further verify the practical appli-
cation of Q-Chase algorithms, we conducted a user study
that involves 5 professional users in graph databases/SQL
search and 5 graduate students (end users), investigating
search scenarios over DBpedia and a private dataset from
our industry partner with real query logs. We revised AnsW
to return top-k query rewrites. For each dataset, the users
are requested to issue 3 initial queries. If not satisfied with
the answer, they provide examples, and (1) re-rank the top-3

query rewrites from AnsW based on answer relevance, and
(2) label the “desired matches” from the returned answers.

Effectiveness. We report the following. (1) The discounted cu-

mulative gain at 3 (nDCG_3) from user’s ranked list and the
one returned byAnsW is on average 0.71. This demonstrates
good consistencywith the user’s ranking in terms of answer
relevance. (2) The precision, defined as the ratio of themanu-
ally labeled relevant entities in the answers of query rewrite,
is on average 0.76. This indicates the good capacity of AnsW
in recovering relevant entities for real queries.

Case analysis. We illustrate two real-world queries issued by

users and suggested query rewrite in Fig. 11.

(1) The first query Qa searches for video games released
after 2003. While 161 video games were retrieved, he pro-
vided “call of duty” as an example. The best query rewrite
(consistent with user feedback) Q ′

a modified Qa with ad-
ditional constraints on genre and operating system (color-
coded predicates). The answerQ ′

a(G) contains 5 games (e.g.,
“Doom 3”) that narrow the interested answers down to “first-
person shooting” games on Windows.

(2) The second query Qb from the query log of our indus-
try partner searches for recent computer models (after 2018)
with constraints on screen size, memory and GPU model,
yet returns no answer. An end user in our study sets T =
{MR942CH/A}, a model id she is aware of, and wonders why
similar laptops are not among the results. AnsW suggested
a query rewriteQ ′

b
that identifies 4 similar MacBookmodels

such as e.g.,MR942LL/A verified as desired products, by revis-
ing Qb with RmL (name=NVidia) and RxE (Laptop,Brand,1,2).
The differential table (not shown) further reveals that relax-
ing GPU and connectivity constraints finds desired laptops
powered by either Intel or AMD GPU.

8 CONCLUSION

Wehave formulated the general problem of answeringWhy-
questions for graph pattern queries. We made case for en-
tity search with P-homomorphism, and approached query
rewriting to clarify unexpected answers. We proposed Q-
Chase, a symbolic representation that extends conventional
Chase, and showed the problem is intractable and hard to
approximate. We introduced Q-Chase-based algorithms to
efficiently implement query chasing process, from fixed pa-
rameter approximations to feasible optimal solutions. We
experimentally verified the efficiency and effectiveness of
Q-Chase-based techniques and its application.

Acknowledgments. This work is supported in part by
USDA/NIFA 2018-67007-28797, UI-ASSIST DE-IA0000025,
and Siemens. A part of this work has been done when Mo-
hammad and Shengqi were in JD AI Research.

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1494

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations

of Databases. Addison-Wesley.

[2] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact

shortest-path distance queries on large networks. In SIGMOD.

[3] Güneş Aluç, Olaf Hartig, M Tamer Özsu, and Khuzaima Daudjee. 2014.

Diversified stress testing of RDF data management systems. In ISWC.

[4] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why

and where: A characterization of data provenance. In ICDT.

[5] Wenfei Fan, Jianzhong Li, Shuai Ma, Hongzhi Wang, and Yinghui Wu.

2010. Graph homomorphism revisited for graph matching. VLDB

(2010), 1161–1172.

[6] Wenfei Fan, XinWang, and YinghuiWu. 2013. Diversified top-k graph

pattern matching. VLDB (2013), 1510–1521.

[7] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional dependen-

cies for graphs. In SIGMOD. 1843–1857.

[8] Mario Arias Gallego, Javier D Fernández, Miguel A Martínez-Prieto,

and Pablo de la Fuente. 2011. An empirical study of real-world

SPARQL queries. In USEWOD workshop.

[9] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. 2010. A survey

of graph edit distance. Pattern Analysis and applications (2010), 113–

129.

[10] Michael Garey and David Johnson. 1979. Computers and Intractability:

A Guide to the Theory of NP-Completeness.

[11] Md Saiful Islam, Chengfei Liu, and Jianxin Li. 2015. Efficient answer-

ing of why-not questions in similar graph matching. TKDE (2015).

[12] Md Saiful Islam, Chengfei Liu, and Rui Zhou. 2012. User feedback

based query refinement by exploiting skyline operator. In ER.

[13] Nandish Jayaram, Sidharth Goyal, and Chengkai Li. 2015. VIIQ: auto-

suggestion enabled visual interface for interactive graph query for-

mulation. VLDB (2015), 1940–1943.

[14] Nandish Jayaram, Arijit Khan, Chengkai Li, Xifeng Yan, and Ramez

Elmasri. 2015. Querying knowledge graphs by example entity tuples.

TKDE (2015), 2797–2811.

[15] Gjergji Kasneci, Fabian M Suchanek, Georgiana Ifrim, Maya Ra-

manath, and Gerhard Weikum. 2008. Naga: Searching and ranking

knowledge. In ICDE.

[16] Samir Khuller, Anna Moss, and Joseph Seffi Naor. 1999. The budgeted

maximum coverage problem. Inform. Process. Lett. 70, 1 (1999), 39–45.

[17] PhokionGKolaitis andMadhukar NThakur. 1994. Logical definability

of NP optimization problems. Information and Computation (1994).

[18] Dániel Marx. 2008. Parameterized complexity and approximation al-

gorithms. Comput. J. 51, 1 (2008), 60–78.

[19] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F Moore, and

Dan Suciu. 2009. Why so? or why no? functional causality for ex-

plaining query answers. arXiv preprint arXiv:0912.5340 (2009).

[20] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-

Cyrille Ngonga Ngomo. 2011. DBpedia SPARQL benchmark–

performance assessment with real queries on real data. In ISWC.

[21] Davide Mottin, Francesco Bonchi, and Francesco Gullo. 2015. Graph

query reformulation with diversity. In KDD.

[22] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis

Palpanas. 2014. Exemplar queries: Give me an example of what you

need. VLDB (2014), 365–376.

[23] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis

Palpanas. 2016. Exemplar queries: a new way of searching. VLDB

(2016), 741–765.

[24] Mohammad Hossein Namaki, Yinghui Wu, Qi Song, Peng Lin, and

Tingjian Ge. 2017. Discovering Graph Temporal Association Rules. In

CIKM. 1697–1706.

[25] Mohammad Hossein Namaki, Yinghui Wu, and Xin Zhang. 2018.

GExp: Cost-aware Graph Exploration with Keywords. In SIGMOD.

[26] Alexandra Poulovassilis. 2018. Applications of Flexible Querying to

Graph Data. In Graph Data Management. 97–142.

[27] L Rocach and O Maimon. 2005. Clustering methods Data mining and

knowledge discovery handbook. Springer US (2005), 321.

[28] Qi Song, Mohammad Hossein Namaki, and Yinghui Wu. 2019. An-

swering Why-Questions for Subgraph Queries in Multi-Attributed

Graphs. In ICDE.

[29] Yinglong Song, Huey Eng Chua, Sourav S Bhowmick, Byron Choi,

and Shuigeng Zhou. 2018. BOOMER: Blending Visual Formulation

and Processing of P-Homomorphic Queries on Large Networks. In

SIGMOD.

[30] Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsi-

etsidis, Gang Hu, and Guotong Xie. 2015. Sqlgraph: An efficient

relational-based property graph store. In SIGMOD.

[31] Quoc Trung Tran and Chee-Yong Chan. 2010. How to conquer why-

not questions. In SIGMOD.

[32] Elena Vasilyeva, Maik Thiele, Christof Bornhövd, and Wolfgang

Lehner. 2016. Answering “why empty?” and “why so many?” queries

in graph databases. J. Comput. System Sci. 82, 1 (2016).

[33] Elena Vasilyeva, Maik Thiele, Adrian Mocan, and Wolfgang Lehner.

2015. Relaxation of subgraph queries delivering empty results. In SS-

DBM.

[34] Meng Wang, Jun Liu, Bifan Wei, Siyu Yao, Hongwei Zeng, and Lei

Shi. 2018. Answering why-not questions on SPARQL queries. KAIS

(2018).

[35] Mohamed Yahya, Klaus Berberich, Maya Ramanath, and Gerhard

Weikum. 2016. Exploratory querying of extended knowledge graphs.

VLDB (2016), 1521–1524.

[36] Shengqi Yang, Fangqiu Han, Yinghui Wu, and Xifeng Yan. 2016. Fast

top-k search in knowledge graphs. In ICDE.

[37] Shengqi Yang, Yinghui Wu, Huan Sun, and Xifeng Yan. 2014. Schema-

less and structureless graph querying. VLDB (2014), 565–576.

[38] Lei Zou, M Tamer Özsu, Lei Chen, Xuchuan Shen, Ruizhe Huang, and

Dongyan Zhao. 2014. gStore: a graph-based SPARQL query engine.

VLDBJ 23, 4 (2014), 565–590.

APPENDIX A: PROOFS

Proof of Lemma 2.2. We describe a procedure to compute
rep(E,V) and verify whetherV |= E as follows. Given an ex-
emplar E=(T ,C), for each tuple pattern t ∈ T , it computes
rep(t ,V) as the set of nodes v , where vsim(v, t) is true (i.e.,
v ∼ t), and sets rep(E,V)=

⋃
t ∈T rep(t ,V). It then enforces

C over rep(E,V) by processing a selection query defined on
a table that consists of the node tuples from rep(E,V), with
a conjunct condition

∧
ł∈C l , and update rep(E,V)with only

those selected ones. By definition, V |= E if rep(E,V) , ∅.
This can be processed in O(|V | |E | + |V |2) time.

Proof of Theorem 3.2. Given a Why question W (Q,E),
graph G, budget B and threshold γ , the decision version
of WQE is to decide whether there exists a query rewrite
Q ′
= Q ⊕ O such that Q ′(G) |= E, c(O) ≤ B and cl(Q ′) ≥ γ .

(1) NP-hardness. We show a strong result that WQE is al-
ready NP-hard when only relaxation operators are allowed,
by a reduction from subgraph isomorphism. Consider two
graphs G1=(V1,E1,L1) and G2 = (V2,E2,L2), where each

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1495

node v1 ∈ V1 (resp. v2 ∈ V2) has a label L1(v1) (resp. L2(v2)).
The subgraph isomorphism is a bijective function from V1
to a set V ′

2 ⊆ V2 that preserves node label equality and
edges. We construct a pattern query Q3 with focus uo that
has (a) a patternQ ′

3 that is isomorphic toG1, where each pat-
tern node u, corresponding to node v in V1, carries a literal
u .AL = L(v), each edge (u,u ′) has label 1, and there is a des-
ignated focus uo in V1; and (b) a pattern edge (uo ,us) with
label 1 fromuo to a new pattern nodeus not inQ

′
3, which car-

ries a literalus .AL = L′, and L′ is not seen inG2. We obtain a
graphG fromG2 by setting an attributev .AL=L2(v) for each
nodev inV2. Let E be the node tuple t with t[LA]=L(uo) and
C=∅, budget B=1, andγ= 1

|V2 |
. Then there exists an answer of

Why-questionW (Q3,E) exists (by removing edge (uo ,us)) if
and only if there exists a subgraph isomorphism fromG1 to
G2. As subgraph isomorphism is NP-hard, WQE with RmE

operators only is already NP-hard.

(2) Approximation hardness. We show that answering
WQE is not constant-approximable unless P = NP . To
prove this, we construct an approximation factor preserv-
ing (AFP) reduction from minimum 3DNF satisfiability
(MinSAT) problem [17] known to be not inAPX. An instance
I1 of MinSAT is of the form C1 ∨ . . . ∨ Cn . Each clause Cj

(j ∈ [1,n]) is of the formyj1∧yj2∧yj3 , and eachyji (i ∈ [1, 3])
is a variable from a set {x1, . . . ,xm}. It is to find a truth as-
signment forC1 ∨ . . .∨Cn , such that a minimum number of
clauses are satisfied. We provide the reduction below.

(1) Given an instance I1 of MinSAT, function f outputs an
instance I2 of theWQE problem as follows. (a) It constructs
Q as a single edge (uo ,u

′), where L(uo)=lo , L(u
′) = l ′, and

for each variable xi (i ∈ [1,m]), it adds a literal xi =⊥ to
uo , where ⊥ can be matched by any value of xi . (b) It adds
a node vj ∈ G with L(vj) = lo for each clause Cj (j ∈ [1,n]).
Each nodevj has three attributes corresponding to the three
variables ofCj . It adds another node v

′ toG with L(v ′) = l ′,
and connects it to all the nodes added to G. (c) It sets cost
bound B =m (number of variables), and define operator RfL
to resolve the wildcard predicates of uo to a truth value to
be assigned to its variable. Let E be a tuple pattern such that
t[L]=l ′′ , lo . ForQ to have maximized closeness, it needs to
have as least irrelevant matches in G as possible.

(2) Given an answer Q ′ and its answer Q ′(G), a function д

simply outputs the refined literals F ′
Q (uo).

The construction (f ,д) is an AFP-reduction fromMinSAT

toWQE. Moreover, we can verify that a clauseCj is satisfied
by the truth assignment FQ ′(uo) if and only if its correspond-
ing nodevj is inQ

′(uo ,G). Assume that for some ϵ > 0, there
is an ϵ-approximation algorithm for WQE, then A guaran-
tees a constant-approximation for MinSAT. As MinSAT is
not in APX,WQE is also not in APX.

Proof of Lemma 4.1. A procedure transforms canonical
sequence to their equivalent normal forms by separating
the relaxation and refinement operators into two disjoint
sets O1 and O2, respectively. It then sorts the operators of
O1 by first putting RxL, RxE, and RmL followed by RmE’s
in a sequence ρ1. This ensures that the operators are ap-
plicable to their previous step. Similarly, it sorts the oper-
ators O2 as a sequence ρ2 by first putting AddE followed
by AddL, RfE, and RfL which ensures the applicability. It
then returns a concatenation of ρ1 followed by ρ2 as a sin-
gle sequence ρ ′. This is doable since a valid canonical se-
quence ρ (1) does not contain redundant operators e.g., mul-
tiple relaxation/refinement on the value/bound of the same
literal/edge are presented by a single operator; and (2) does
not contain conflicting operators on the same node/edge of
the query that cancel-out each other e.g., AddE (u, u’, b),
RmE (u, u’, b); Thus, there exists an equivalent Q-Chase se-
quence ρ ′ in a normal form.

Proof of Theorem 4.3. We provide the following analysis.

(1) To see If, assume there is a terminal Q-Chase sequence
from the root with result (Qk ,E). As ρ is a sequence of
valid Q-Chase steps, each step that chases Q from (Qi ,Ei)

to (Q j ,Ej) ensures the invariant that Q j (G) |= Ej . Thus
Qk (G) |= E and c(O)=c(ρ) ≤ B for Qk=Q ⊕ O . Thus Qk

is an answer for Why-question.

(2) The Only If states that for any answer Qk ofW (Q,E),
there exists a path ρ from the root with a result (Qk ,E)

in Q-Chase (W ,G,B). We prove this by contradiction. Let
Qk=Q ⊕ O , where O can be easily obtained by comparing
Q and Q ′. We construct a Q-Chase sequence ρ accordingly,
and transform it to an equivalent normal form ρ ′. Assume
ρ ′ is not in Q-Chase (W ,G,B). Then either ρ ′ is not valid,
or it is not terminal. If ρ is not valid, then there exists a Q-
Chase step from (Qi ,Ei) to (Q j ,Ej) for whichQ j 6 |= Ej with
operator o (which is known to be applicable). If it is not ter-
minal, then c(ρ) > B. Either case leads to the contradiction
that Qk is an answer forW (Q,E).

Given the above analysis, the optimality guarantees in
Theorem 4.3 (2) follows.

Proof of Theorem 6.1: Approximability. We provide de-
tails of approximation ratio of Algorithm ApxWhyM by
providing the reduction to budgeted maximum weighted
coverage problem [16]. We consider each operator o gen-
erated from the seed set Os as a subset of a universal set
U=Vuo , where each refinement operator o can “cover” a
subset of U as Q(uo ,G) \ (Q ⊕ {o})(uo ,G) i.e., the elimi-
nated elements due to adding operator o. The weight of
each element v ∈ rep(E,Q) computed as −cl(v,E) and the
element v ∈ Q(uo ,G) \ rep(E,Q) assigned as +λ. Thus,
the weight of a single o (as the subset) is computed as
cl(Q ′(G),E) − cl(Q(G),E) whereQ ′

= Q ⊕ {o}, and the cost

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1496

of the subset is c(o). Setting B as budget for subset selec-
tion, the problem is to find a collection O∗ of operators to
construct Q∗

= Q ⊕ {O∗} such that it maximizes the total
weight cl(Q∗(G),E) − cl(Q(G),E). Similar to the coverage
problem where a subset is enough to cover an element, in
here, an operator is enough to eliminate a candidate and
thus removing its effect from cl(Q∗(G),E). Indeed, maximiz-
ing the constructed budgeted set cover problem is equiva-
lent to maximizing the cl(Q∗(G),E) − cl(Q(G),E) wherein
cl(Q(G),E) is constant and thus cl(Q∗(G),E) is maximized.
ApxWhyM simulates a greedy algorithm to ensure a 1− 1

e
approximation [16] by greedily selecting operators with

maximized w (O∪{o })−w (O)
c(o)

. As the size of queries a fixed

small parameter k1 with small domain size k2, which is a
practical assumption for real-world queries [8], ApxWhyM

ensures a fixed-parameter approximation.

Proof of Lemma6.2. The algorithmAnsWE considers each
literal and edge of the queryQ as a single “atomic condition”
that may be responsible for elimination of a node v ∈ R(uo)

from Q(uo ,G). To this end, it creates a set of smaller frag-
ments and evaluates them as follows. (1) for each literal
l ∈ FQ (uo), it creates a single nodeuo with a single predicate
l ∈ FQ (uo). (2) for each node u , uo , it creates a single edge
(u,uo)with the edge bound as the distance betweenu anduo
inQ . (3) For each literal l ∈ FQ (u), it generates a copy of cre-
ated single edge (u,uo) and adds the single literal l . Clearly,
each generated fragment represents an atomic condition ei-
ther a literal (case 1 and 3) or an edge (case 2) that can be
relaxed by an operator eitherRmL orRmE, respectively. One
can verify that (1) a relevant candidate of Q is not RM for
at least one of the generated fragments; and (2) the relevant
candidate does not become an RM inQ unless all such frag-
ments are removed from the query (given RmL and RmE as
the only relaxation operators). That is, for a v ∈ RC to be
a match, all of its picky conditions should be relaxed. Thus,
AnsWE can associate each v ∈ RC to a subset of generated
fragments (and consequently their relax operators) thatv is
not RM . A node v ∈ RC can be an RM for Q if the total cost
of associated operators is within B.
The number of generated fragments are bounded by

|Q |. Given a distance index that verifies the distance
of two nodes, a fragment can be evaluated in at most
O(|rep(E,V)| |V |). Thus, in total the complexity of AnsWE

is O(|Q | |rep(E,V)| |V |).

APPENDIX B: OPTIMIZATION

We provided examples of picky operator generation in Sec-
tion 5. In here, we introduce more details of picky operator
generation and illustrate remaining 3 operator types.

Generating Relaxation Operators. The goal of generat-
ing relaxation operators is to convert relevant candidates

IC that are not currently inQ(G) to RM. Thus, the picky op-
erators refer to those that relax the conditions to cause the
addition of at least a relevant match.

Identifying picky edges. NextOp first identifies picky edges
(u,u ′), which have verified matches or involve candidates
that can reach any RC nodes, thus may bring new matches
if the conditions it poses are relaxed. More specifically, for
each pattern edge (u,u ′) in Q , NextOp consults the star
tables Q .S(G) and decides whether (u,u ′) is a picky edge
(maintained by a set EP) as follows. (1) Assume w.l.o.g.u=uo ,
and there exists a RC node not in any star table of Q .S(G)
(not a match), but is reachable to any seen matches of u ′

in a table, NextOp adds (u,u ′) to EP . (2) If neither u nor
u ′ is uo , but there is a star table with candidates of u or
u ′ that can reach an RC node via candidates that follows a
path {(u,u ′), (u ′

,uo)} or vice versa, NextOp adds (u,u
′) and

(u ′
,uo) to EP . This generates a set of RC nodes that may be

introduced as matches, denoted as RC(EP).

Generating picky operators. For each picky edge (u,u ′) in EP ,
procedure GenRx generates four types of relaxation opera-
tors following predefined optimized rules. For example, it
generates RxE operators as follows.
A maximum edge bound bm for edge operator RxE is

posed. Thus, RxE relaxes the edge bound LQ (e) up to bm .
Let dist(u,u ′) be the sum of the edge bounds on a shortest
path inQ fromu tou ′ that does not contain e . If LQ (e) < bm ,
RxE((u,u ′),LQ (e),LQ (e) + 1) is added.

Generating Refinement Operators. In contrast to gener-
ating relaxation operators, the goal of refinement is to re-
move irrelevant matches IM fromQ(G) as much as possible.
Thus, the picky operators refer to those responsible of re-
moving irrelevant matches.

Identifying picky edges. An edge (u,u ′) is picky for refine-
ment conditions when it directly involves RM nodes, or
has matches whose removal cause the removal of IM nodes.
Thus, for each pattern edge (u,u ′) in Q , NextOp checks the
following. (1) Assume w.l.o.g. u=uo , and there exists a RM

node in Q .S(G) seen in the entry for u, NextOp adds (u,u ′)

to picky edge set EP . (2) If neither u nor u ′ is uo , but there
is a star table with matches of u or u ′ that can reach an RM

node viamatches that follows a path {(u,u ′), (u ′
,uo)} or vice

versa, NextOp adds (u,u ′) and (u ′
,uo) to EP .

NextOp induces RM(EP) and the picky domain
adom(A,EP) for involved attributes accordingly.

Generating AddE. GenRf adds two types of edges. (1) For

each pair (uo ,u) in Q ((uo ,u) < EQ), if there is a shortest
path of length k between an RM node v and a match v ′ of a
non-focus node u in Q (resp. if v and v ′ are not reachable),
it adds AddE ((u,u ′),k − 1) with k − 1 up to b (resp. AddE
((u,u ′), 1)). (2) For each node u in Q , and any node v in G

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1497

within its b hop that can be reached by an RM node with
a shortest path with length k (resp. not reachable), it adds
AddE ((u,u ′),k − 1) (resp. AddE ((u,u ′),k + 1)), where u ′ is
a new pattern node, initialized with L′Q (u

′)=L(v)).

Generating RfL. These rules refine existing (constant) liter-

als in Q to reduce IM nodes. For each node u and match
v ∈ Q(u,G) reachable by some RM node, and for each literal
l=v .Aopc , it adds an RfL with value a only when at least a
IM node fails the refined literal. (1) if c =⊥, add RfL(l , u .A
op a); (2) if op ∈ {<, ≤} and c ≥ a, add RfL(l , u .A < a); (3)
if op ∈ {>, ≥} and c ≤ a, add RfL(l ,u .A > a); (4) if op is
′
=
′ and ai , c , add RfL(l ,u .A = a). We remark that RfL is

not generated for categorical-valued domains. Instead, the
values are enumerated by an AddL.

Completeness of Operator Generation. Given the de-
scribed procedure GenRf (resp. GenRx), it generates all the
applicable refine (resp. relax) operators when there is a hope
to reduce IM (resp. increase RM) by investigating the neigh-
borhood of RM (resp. RC).

Proof of Lemma 5.2 To see Lemma 5.2(1), observe that
|RC(o)| ≥ |RC(o)|. That is, for any relevant candidate v ∈

RC(o) that eventually becomes matches by applying o, v ∈

RC(o), as the latter includes all the candidates (including v)
induced by picky edges affected by o that can be possibly
new matches. Thus p(o) ≥ cl(Q ⊕ {o},E) − cl(Q,E).

Proof of Lemma 5.5. Lemma 5.5 (1) can be shown by
observing that when cl+(Q2,E)=cl

∗, for any Q3=Q2 ⊕ O

with relaxation operators only, cl+(Q3,E) ≤ cl+(Q2,E), and
Q2(G) \ rep(E,V) ⊆ Q3(G) \ rep(E,V), thus cl(Q3,G) is no
larger than cl(Q2,G). This suggests an early switching from
relaxation phase to refinement phase for any Q-Chase se-
quences. To see Lemma 5.5 (2), observe that Q2 is refined
fromQ1, thus cl

+(Q1,E) ≥ cl+(Q2,E) ≥ cl(Q2,E). This prun-
ing property helps to prune unpromising query rewrites at
any refinement phase of Q-Chase sequences.

Queries with multiple focus nodes. Our algorithms can
be readily extended to support answeringWhy-questions by
exemplars that involve multiple focus nodes in Q . Indeed,
for each focus node ui ∈ VQ (1) E can be defined as the
union of all Ei while rep(E,V) remains the same; (2) Q(G)
is extended to a set of sets Q(ui ,G); and Q-Chase and all
algorithms readily extended for this case.

APPENDIX C: EXTENSIONS AND
ADDITIONAL EXPERIMENTS

Why-Many Questions.We provide the details of operator
generation and analysis of answering Why-Many below.

Seed generation. Procedure SeedRf first “locally” refines op-

erators in Q by choosing picky edges involving RM nodes,
following its counterpart GenRf in algorithm AnsW. It then

 1

 10

 100

 1000

DBPedia IMDB

T
im

e
(s

ec
o

n
d

s)

FMAnsW
AnsWb
AnsW

AnsWM
AnsHeu(k=1)

(a) Why-Many: Efficiency

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

DBPedia IMDB

C
lo

se
n
es

s

FMAnsW
AnsW

AnsWM

AnsHeu(k=1)
AnsHeuB

(b) Why-Many: Effectiveness

 1

 10

 100

DBPedia IMDB Panama

T
im

e
(s

ec
o

n
d

s)

AnsWE AnsWb AnsW

(c) Why-Empty: Efficiency

 1

 10

 100

1 2 3 4 5 6

T
im

e
(s

ec
o
n
d
s)

AnsWb
AnsW

AnsWE

(d) Why-Empty: Varying |EQ |

Figure 12: Why-Many and Why-Empty

explores at most B hop neighbors of the matches Q(u,G)
that are connected to RMmatches, for each node u inQ (de-
noted as NB (Q,G)). Each time a node is visited, it enforces
an AddE operator to Os with a label matching the current
distance, followed by generation of AddL and RfL, treating
the newly inserted edge as a picky one. This process repeats
until no new refinement operators can be generated.

Analysis of Why-Many. The fixed-parameter approximabil-

ity can be verified by an approximation preserving reduc-
tion from answeringWhy-Many question to budgetedmaxi-
mumweighted coverage [16], which is approximable within
1
2 · (1 − 1

e
) by a greedy selection strategy. The above re-

duction holds when both k1, including the query size and
the number of attributes involved in Q and E, and k2, the
maximum domain size of these attributes, are fixed. It takes
O(|NB (Q,G)|k

2
1 ·k2) time to identify Os , andO(|NB (Q,G)|

k1)

time to greedily select an operator. The total time is thus in
O(k41 · k

2
2 · |NB (Q,G)|

k1+2) time.

Exp-4: Answering Why-Empty and Why-Many. We
evaluate the efficiency and effectiveness of answering Why-
Many and Why-Empty questions in Fig. 12.

Performance for Why-Many. Fig. 12(a) and Fig. 12(b) reports

the efficiency and effectiveness of answering Why-Many
over DBpedia and IMDB. It tells us (1) ApxWhyM outper-
forms FMAnsW, AnsWb, and AnsW, by 15, 9.5, and 6 times.
(2) On average, it takes 14 seconds for ApxWhyM to reduce
the size of IM while it has approximate guarantees.

Performance for Why-Empty. We compare the PTIME al-

gorithm AnsWE with the general algorithms AnsW and
AnsWb/. Fig. 12(c) shows that AnsWE outperforms its coun-
terparts AnsWb and AnsW by 7.91 and 3.79 times over all
the datasets. Indeed, it only discovers atomic picky condi-
tions and removes them within the cost bound.

Research 15: Graphs 3 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1498

	Abstract
	1 Introduction
	2 Why-questions: A Specification
	2.1 Graph Pattern Queries Revisited
	2.2 Why-questions with Exemplars
	2.3 Star Views: A Primitive Structure

	3 Answering Why-Question
	4 Q-Chase: A Characterization
	5 Q-Chase-based Algorithms
	5.1 Computing Optimal Query Rewrite
	5.2 Match: Querying with Star Views
	5.3 NextOp: Generating Picky Operators
	5.4 Prune: Pruning Q-Chase Sequences
	5.5 A Faster Heuristic

	6 Extensions
	6.1 Approximating Q-Chase
	6.2 Top-k Query Suggestion

	7 Experimental Evaluation
	8 Conclusion
	References

